(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 6.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 160332, 3327] NotebookOptionsPosition[ 156415, 3201] NotebookOutlinePosition[ 156843, 3219] CellTagsIndexPosition[ 156800, 3216] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["\:6570\:7406\:30d5\:30a1\:30a4\:30ca\:30f3\:30b9 ", "Title"], Cell["24. Central Limit Theorem(\:4e2d\:5fc3\:6975\:9650\:5b9a\:7406)", \ "Subtitle", CellChangeTimes->{{3.657329023101832*^9, 3.657329037692685*^9}}], Cell[TextData[StyleBox["24.1 CLT", FontWeight->"Bold"]], "Subsubtitle", CellChangeTimes->{{3.65732902811261*^9, 3.657329028168523*^9}}, FontColor->RGBColor[0, 0.501961, 1]], Cell["\<\ \:53c2\:8003\:306e\:305f\:3081\:ff0c\:4e2d\:5fc3\:6975\:9650\:5b9a\:7406\:3092\ \:8ff0\:3079\:3066\:304a\:304f\:3002\:5b9a\:7406\:304c\:6210\:7acb\:3059\:308b\ \:305f\:3081\:306e\:524d\:63d0\:6761\:4ef6\:306b\:3044\:304f\:3064\:304b\:306e\ \:30d0\:30ea\:30a8\:30fc\:30b7\:30e7\:30f3\:304c\:3042\:308b\:3002\:3053\:3053\ \:3067\:306f\:671f\:5f85\:5024\:3068\:5206\:6563\:304c\:6709\:9650\:3067\:3042\ \:308b\:3053\:3068\:3092\:8981\:6c42\:3059\:308b\:30b1\:30fc\:30b9\:3092\:8ff0\ \:3079\:308b\:3002\:300c\:3084\:3084\:3053\:3057\:3044\:300d\:3068\:611f\:3058\ \:305f\:4eba\:306f\:ff0c\:3053\:306e 21.1 \ \:7bc0\:306f\:98db\:3070\:3057\:3066\:3082\:69cb\:308f\:306a\:3044\:3002 \ \>", "Text", CellChangeTimes->{{3.522385106214583*^9, 3.522385133177054*^9}, { 3.65732905559345*^9, 3.657329057137826*^9}}], Cell[BoxData[ RowBox[{ SubscriptBox["x", "1"], ",", SubscriptBox["x", "2"], ",", "\:30fb\:30fb\:30fb\:306f", ",", "\:72ec\:7acb\:3067", ",", "\:540c\:3058\:5206\:5e03\:306b\:5f93\:3046\:78ba\:7387\:5909\:6570\:3067", ",", RowBox[{ RowBox[{"(", "\:6709\:9650\:306e", ")"}], "\:671f\:5f85\:5024\[Mu]\:3068", RowBox[{"(", "\:6709\:9650\:306e", ")"}], RowBox[{"\:5206\:6563\[Sigma]", "^", "2"}], "\:3092\:6301\:3064\:3068\:4eee\:5b9a\:3059\:308b"}], "\:3002", "\[IndentingNewLine]", "\:3053\:308c\:3089\:304b\:3089", "\:ff0c"}]], "Text", CellChangeTimes->{{3.6573290755730143`*^9, 3.657329107076331*^9}}, FontWeight->"Bold"], Cell[BoxData[ RowBox[{" ", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["Z", "n"], "=", RowBox[{ FractionBox[ SqrtBox["n"], "\[Sigma]"], RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", "n"], RowBox[{"\[Sum]", SubscriptBox["X", "j"]}]}], " ", "-", " ", "\[Mu]"}], " ", ")"}]}]}], ",", " ", RowBox[{"n", "=", "1"}], ",", "2", ",", "3", ",", "\:30fb\:30fb\:30fb\:30fb"}], "\[IndentingNewLine]"}]}]], "Text", FontWeight->"Bold"], Cell["\:3092\:4f5c\:308b\:3002\:3053\:306e\:3068\:304d,\:3059\:3079\:3066\ \:306e -\[Infinity]"Bold"], Cell[BoxData[ RowBox[{" ", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["lim", RowBox[{" ", RowBox[{"n", "\[RightArrow]", "\[Infinity]"}]}]], RowBox[{"Prob", RowBox[{"(", RowBox[{ SubscriptBox["Z", "n"], "<", "u"}], ")"}]}]}], " ", StyleBox["=", FontColor->RGBColor[1, 0, 0]], " ", RowBox[{ RowBox[{"Prob", RowBox[{"(", RowBox[{"Z", "<", "u"}], ")"}]}], ":=", RowBox[{ SubsuperscriptBox["\[Integral]", RowBox[{"-", "\[Infinity]"}], RowBox[{"u", " "}]], RowBox[{"g", RowBox[{"(", "x", ")"}], "dx"}]}]}]}], ","}]}]], "Text", FontWeight->"Bold"], Cell[BoxData[ RowBox[{" ", RowBox[{ RowBox[{"g", RowBox[{"(", "x", ")"}]}], "=", RowBox[{ FractionBox["1", SqrtBox[ RowBox[{"2", "\[Pi]"}]]], SuperscriptBox["e", RowBox[{ RowBox[{"-", SuperscriptBox["x", "2"]}], "/", "2"}]]}]}]}]], "Text", FontWeight->"Bold"], Cell["\<\ \:3068\:306a\:308b\:3002 \ \>", "Text", FontWeight->"Bold"], Cell["\<\ \:6ce8)\:4e0a\:5f0f\:53f3\:8fba\:306eg(x)\:306f,\:671f\:5f85\:5024\:304c0\ \:3067\:5206\:6563\:304c1\:306e\:6a19\:6e96\:6b63\:898f\:5206\:5e03Z\:306e\ \:5bc6\:5ea6\:95a2\:6570\:3067\:3042\:308b\:3002\:3053\:306e g(x) \ \:3092\:30de\:30a4\:30ca\:30b9\:7121\:9650\:5927\:304b\:3089u\:307e\:3067\ \:7a4d\:5206\:3057\:305f\:3082\:306e\:3068\:3057\:3066\:5b9a\:7fa9\:3055\:308c\ \:3066\:3044\:308bProb(Z", "Text", CellChangeTimes->{{3.522385177523209*^9, 3.522385239470368*^9}}], Cell[BoxData[ RowBox[{"\[IndentingNewLine]", " ", RowBox[{ "\:3053\:306e\:4e2d\:5fc3\:6975\:9650\:5b9a\:7406\:306f", ",", "\[IndentingNewLine]", "\:3000\:3000", RowBox[{ RowBox[{"\:671f\:5f85\:5024\[Mu]\:3068\:5206\:6563\[Sigma]", "^", "2"}], "\:3092\:3082\:3064"}], ",", "\:3044\:304b\:306a\:308b\:78ba\:7387\:5206\:5e03\:306b\:3064\:3044\:3066\ \:3082", ",", "\[IndentingNewLine]", "\:3000\:3000", "\:305d\:308c\:3092\:72ec\:7acb\:306a\:78ba\:7387\:5909\:6570\:306e\:5217\ \:3068\:3057\:3066n\:56de\:53d6\:308a\:51fa\:3057\:3066", ",", "\[IndentingNewLine]", "\:3000\:3000", RowBox[{"\:5e73\:5747", FractionBox["1", "n"], RowBox[{"\[Sum]", RowBox[{ SubscriptBox["X", "j"], "\:304b\:3089"}]}]}], ",", "\:671f\:5f85\:5024\[Mu]\:3092\:3072\:3044\:305f\:3082\:306e\:306b", ",", RowBox[{ RowBox[{ RowBox[{"\[Sqrt]", "n"}], "/", "\[Sigma]\:3092\:304b\:3051\:3066"}], "\<\"\:6a19\:6e96\:5316\"\>", "\:3057\:305f"}], ",", RowBox[{ SubscriptBox["Z", "n"], "\:3068\:3044\:3046\:78ba\:7387\:5909\:6570\:3092\:4f5c\:3063\:3066\:3084\ \:308b\:3068"}], ",", "\:3000", "\[IndentingNewLine]", "\:3000\:3000", RowBox[{ SubscriptBox["Z", "n"], "\:3068\:3044\:3046\:78ba\:7387\:5909\:6570\:306e\:5206\:5e03\:306f"}], ",", RowBox[{"n\:304c", RowBox[{"(", "\:5341\:5206", ")"}], "\:5927\:304d\:304f\:306a\:308b\:3068\:6a19\:6e96\:6b63\:898f\:5206\:5e03\ \:306b\:8fd1\:3065\:3044\:3066\:3044\:304f"}], ",", "\[IndentingNewLine]", RowBox[{ "\:3068\:3044\:3046\:3053\:3068\:3092\:793a\:3057\:3066\:3044\:308b", "."}]}]}]], "Text", CellChangeTimes->{{3.4292564133639812`*^9, 3.429256423290642*^9}, { 3.429256466013061*^9, 3.429256521945739*^9}}], Cell["\<\ \:4f8b\:3068\:3057\:3066,[0,1]\:306b\:4e00\:69d8\:306b\:5206\:5e03\:3059\ \:308b\:78ba\:7387\:5909\:6570 Rondom \:304c,p\:4ee5\:4e0b\:306e\:5b9f\:73fe\ \:5024\:3092\:3068\:3063\:305f\:3068\:304d1\:5186\:3082\:3089\:3044(\:305d\ \:3046\:3067\:306a\:3044\:3068\:304d0\:5186\:3082\:3089\:3046) \"coin toss\"\ \:3092\:8003\:3048\:3088\:3046\:3002\:3053\:308c\:3092500\:56de\:7e70\:308a\ \:8fd4\:3057\:3066\:ff0c\:ff11\:30b2\:30fc\:30e0\:3068\:3059\:308b\:3002 \:30b3\:30a4\:30f3\:30c8\:30b91\:56de\:306e\:671f\:5f85\:5024\:306f 1\ \[Times]p+0\[Times](1-p)=p\:3067\:3042\:308b\:3002 \:30b3\:30a4\:30f3\:30c8\:30b91\:56de\:306e\:5206\:6563\:306f (1\:ff0dp)^2\ \[Times]p+(0\:ff0dp)^2\[Times](1\:ff0dp)=p(1-p)\:3067\:3042\:308b\:3002(\:5206\ \:6563\:306f,\:5024\:304b\:3089\:671f\:5f85\:5024\:3092\:3072\:3044\:3066\ \:4e8c\:4e57\:3057\:305f\:3082\:306e\:306e\:671f\:5f85\:5024\:3002) \:30b3\:30a4\:30f3\:30c8\:30b92\:56de\:306e\:671f\:5f85\:5024\:306f2p\:3067\ \:3042\:308b\:3002\:5206\:6563\:306f 2p(1-p) \:3067\:3042\:308b\:3002 \:ff4d \:56de\:3067\:306f\:ff0c\:671f\:5f85\:5024\:304c \:ff4dp, \:5206\ \:6563\:304c \:ff4dp(1-p) \:3068\:306a\:308b\:3002 \:3053\:3053\:306e \:ff4d=500 \:306e\:ff11\:30b2\:30fc\:30e0\:3067\:306f\ \:ff0c500p \:3068 500p(1-p) \:3067\:3042\:308b\:3002\:3053\:308c\:3092\:ff0c\ \[CloseCurlyDoubleQuote]\:ff4e\[CloseCurlyDoubleQuote]\:56de\:7e70\:308a\:8fd4\ \:3059\:3002 \:3053\:3053\:3067\:306f\:ff0c\:671f\:5f85\:5024\:3068\:5206\:6563\:304c\ \:6709\:9650\:306e\:5024\:306a\:306e\:3067\:ff0c\:4e2d\:5fc3\:6975\:9650\:5b9a\ \:7406\:304c\:9069\:7528\:3067\:304d\:308b\:305f\:3081\:306e\:6761\:4ef6\:306f\ \:ff0c\:3042\:3068\:ff0c\:300c\:6bce\:56de\:306e\:30b2\:30fc\:30e0\:304c\:72ec\ \:7acb\:300d\:3068\:3044\:3046\:3053\:3068\:3060\:3051\:3067\:3042\:308b\:3002 \ \>", "Text"], Cell[BoxData[ RowBox[{ RowBox[{"30000", RowBox[{ "\:56de\:7e70\:308a\:8fd4\:3057\:305f\:3068\:304d\:306e\:30d2\:30b9\:30c8\ \:30b0\:30e9\:30e0\:3068\:6b63\:898f\:5206\:5e03\:3068\:3092\:6bd4\:3079\:305f\ \:30b0\:30e9\:30d5\:306f\:6b21\:306e\:901a\:308a", ".", " ", "\:3042\:308b\:30c6\:30ad\:30b9\:30c8\:306b\:8f09\:3063\:3066\:3044\:305f\ \:30d7\:30ed\:30b0\:30e9\:30e0\:3067"}]}], ",", RowBox[{ RowBox[{ "n\:306e\:304b\:308f\:308a\:306bk\:56de\:7e70\:308a\:8fd4\:3059\:3068\:3044\ \:3046\:3053\:3068\:306b\:306a\:3063\:3066\:3044\:308b", ".", "\:30d7\:30ed\:30b0\:30e9\:30e0\:306e\:89e3\:8aac\:306f\:3057\:306a\:3044\ "}], ".", "\[IndentingNewLine]"}]}]], "Text"], Cell[BoxData[ RowBox[{ RowBox[{"CLT", "[", RowBox[{"p_", ",", "m_", ",", "k_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"h", ",", "x", ",", "y", ",", "i", ",", RowBox[{"j", "=", "0"}], ",", "s", ",", "z"}], "}"}], ",", RowBox[{ RowBox[{"Array", "[", RowBox[{"h", ",", "17"}], "]"}], ";", RowBox[{ RowBox[{"coin", "[", "]"}], ":=", RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"RandomReal", "[", "]"}], "<", "p"}], ",", "1", ",", "0"}], "]"}]}], ";", RowBox[{"lines", "=", RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.005`", "]"}], ",", RowBox[{"Hue", "[", "0", "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "4"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01`", "]"}], ",", RowBox[{"Hue", "[", "0", "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.01`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.01`"}], "}"}]}], "}"}], "]"}]}], "}"}]}], "}"}], "]"}]}], ";", RowBox[{ RowBox[{"bars", "[", RowBox[{"x_", ",", "y_"}], "]"}], ":=", RowBox[{"{", RowBox[{ RowBox[{"Hue", "[", "0.3", "]"}], ",", RowBox[{"Rectangle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "-", "0.2"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"x", "+", "0.2"}], ",", RowBox[{"10", "y"}]}], "}"}]}], "]"}]}], "}"}]}], ";", RowBox[{"Do", "[", RowBox[{ RowBox[{ RowBox[{"h", "[", "i", "]"}], "=", "0"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"-", "8"}], ",", "8"}], "}"}]}], "]"}], ";", RowBox[{"Do", "[", RowBox[{ RowBox[{ RowBox[{"s", "=", "0"}], ";", RowBox[{"Do", "[", RowBox[{ RowBox[{"s", "+=", RowBox[{"coin", "[", "]"}]}], ",", RowBox[{"{", "m", "}"}]}], "]"}], ";", RowBox[{"z", "=", FractionBox[ RowBox[{"s", "-", RowBox[{"m", " ", "p"}]}], SqrtBox[ RowBox[{"m", " ", "p", " ", RowBox[{"(", RowBox[{"1", "-", "p"}], ")"}]}]]]}], ";", RowBox[{"i", "=", RowBox[{"Floor", "[", RowBox[{ RowBox[{"2.5`", " ", "z"}], "+", "0.5`"}], "]"}]}], ";", RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"i", ">", RowBox[{"-", "9"}]}], "&&", RowBox[{"i", "<", "9"}]}], ",", RowBox[{ RowBox[{"++", RowBox[{"h", "[", "i", "]"}]}], ";", RowBox[{"++", "j"}]}]}], "]"}]}], ",", RowBox[{"{", "k", "}"}]}], "]"}], ";", RowBox[{"hist", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"bars", "[", RowBox[{ RowBox[{"0.4", "i"}], ",", FractionBox[ RowBox[{"h", "[", "i", "]"}], RowBox[{"0.4", " ", "j"}]]}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"-", "8"}], ",", "8"}], "}"}]}], "]"}]}], ";", RowBox[{"normalcurve", "=", RowBox[{"Plot", "[", RowBox[{ FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"-", "x"}], ")"}], " ", "x"}]], SqrtBox[ RowBox[{"2", " ", "\[Pi]"}]]], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "3.5`"}], ",", "3.5`"}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.005`", "]"}], ",", RowBox[{"Hue", "[", "0.82`", "]"}]}], "}"}]}]}], "]"}]}], ";", RowBox[{"Show", "[", RowBox[{"lines", ",", "normalcurve", ",", RowBox[{"Graphics", "[", "hist", "]"}], ",", RowBox[{"ImageSize", "\[Rule]", "500"}]}], "]"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.429261103787571*^9, 3.429261107239004*^9}, { 3.429261201519659*^9, 3.4292612073213377`*^9}, {3.429261303468499*^9, 3.4292613424648046`*^9}, {3.429261456370298*^9, 3.429261461819783*^9}, { 3.429261615127326*^9, 3.429261620751072*^9}, {3.4292617310824213`*^9, 3.429261735003706*^9}, {3.429261929649826*^9, 3.429261937207348*^9}, 3.429261997723343*^9, {3.429262034159926*^9, 3.429262034772058*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[1]:="], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"CLT", "[", RowBox[{"0.5", ",", "500", ",", "30000"}], "]"}]], "Input", CellChangeTimes->{3.429261943930375*^9, 3.429262163641919*^9}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[2]:="], Cell[BoxData[ GraphicsBox[{{ {Hue[0], Thickness[0.005], LineBox[{{-4, 0}, {4, 0}}]}, {Hue[0], Thickness[0.01], LineBox[{{0, -0.01}, {0, 0.01}}]}}, {{}, {}, {Hue[0.82, 1, 1], Thickness[0.005], Opacity[1.], LineBox[CompressedData[" 1:eJw1mXk4VF/8xxkzw8ykrFEkLSqVJaEvqc8VFWXJEm1UhKyhbJEta0LIvu97 lpBQ91paRLZhzJAlFZFKZMn6u7/n+f3+us/r+Zx7zvtzPss99zm7zO7oWxDY 2Nha2dnY/vep4Uaf3tigYUk+ko0JCVpAfbDbOGmFhhm3c91q69SCNn+nRvlF GnZv8ufH65zaoBOxJc76Fw2jP1M3L3fTBoPc80D/RMMedbq9ZDfRAVN6c1Te Sxq2b5ull/uOC+AiU6WofZeGZcfzdp/Zqw+KChyZEw40DCpz25PO6MOSsj7N 34aGJT82lDporQ/3z8yM1NykYXxuP8JWn+mDr8nhUPELNKxt0xWWxwkDeByW Mzh3mIZ9+y9iu6SlIWRNPPVNGqdiPreQBPKkEdA5tE4wPlMx5xAXeyEhYyCK cyzzDlGx80pP0r1OG4PFJae7oXQqxlv/W+VMtjEcaNW2dMeoWDfPhMs3s0tQ WkTWMkqiYlenvm7pnL0MtfbuQnw6VKyXW+eW7mUTmAyV6dXWpGJFc7sdCDEm sD1v/EmoOhUz1RMzEP1oAp7DhlT241Rs4tPCkeBTpnBS98ja7/1UrOztQa7z ctehRXZq7CM7Fbu9Z22OO+YGdM5dfRZaTcEiFav/+1BhBi0mdzW2VlAws5K1 Zj26GdS9ezSWVULBcuT3Pt0ybwY5yS+3NmRTsADVFHkZJXO4rybk8yuKgg0G cHwlt5jDvpgeXQMHCvZtZS742tdb4C2n+Ud0Pz5ewsuoX88K7qXcCCvcTcHM fQrnG+9bgTXZXUJRjILxvz+/+We2FRgO5F3WFaRgS6tyVPKiFRz0Jzb5cVAw y+a3vVoZt6GvG40eH+HChPXyD3ptWMNhJ0X58gQubBvjOmly1g7ubSUfMHjK hWWbyOsl7rGHV/V9IguRXFjV3ca30Yb2oEN24VAJ5sLC7LXzzF7Yw53k5z3v XLgwqodyhK+vA1S+kXUa0efCPBqu3wvgcYT/th96tpmbC1stZPFudDiBL7qc WcHFhdl8NdyjMe0Erbc+xBoSubDxJzkb9RRnuFJm/SBphRMTbh//sfe0M3iq F2jtm+LEvjWEmLO/dobXDhI/TrzjxChKSbP8tXfhdPPOA/Z+nJj+R/fC3Z0u sOpt7FDhxYmxlz6qkJx3gSrlyKp5N07syOvpc7YirrC3ch3xduDEikoiTdNv uwIhc+hy5FVObCnuuz6d5AaYd3JYhQInZilnml563h2UlYV+z0+SseaxS14G nJ4wO6+joPyNjF1vdg9XU/CEooogT+9RMhY66C3ibu4J2yQXODn7ydiJyKm1 MswTloT6xIVbyFhIOLLtlrcXVM9H6yunkTHjAILbAU5vkK3YXOOtT8Y2LM+d UivwhZK6PBa/DhnTS+BPWm/0BcmWk2sFmmRsfsdM+KdBX9jd76BOR8jYvbMW o2w8fiCw1tGzX4aM3ScFGvz28INFjcjfXTQy5tMvORZg6A+vR7dI7nlDwrx5 c22yJQJAeSpfqxYjYVSRF4JragHwYg4ctRtIGFHwyClvswAoJzu+cHtOwpxl KpsW0wMg83DX6fZMEmZqVTXcJhoIAe5PzFy8SZjwJ9c6UbEgOM/Dm/LuGAn7 N7nUFIyEgKIsL9+6HAm7n9BcstMqBHZf4A2RlyZhJNUFhenwEFiO5L2XuZeE NWaPkPZ+CoGCLXxanrwk7OWHxlcCnqFA3sK/Kv2DiLHypYmHmx9BE7fgtbg0 IvaKNjTY/CAcnkkJ9rQnErHrfVK7TIvDIUlbUIMjloiFiqgry7PCwSlcUN4x jIhJGwz1PVWIAHHurZvOuROxTal3jkv/iQDvTUINa3pETDNIVHpF6Qko0baJ WpCImEVPMKG5NwrcLbt/VLARsan9UEv9HQU1jaH16ysc2NvK1t/OlGiQd1++ kjDLgTHJL6/knowG6W+DiW0jHNhPlwbT2KJo2IumCcnVcWB77FyONoTEwOa7 e/k3HDiwUlEzx0XTWNDq+DR23oYDO9Udahr6IBbCJGMrEyw4MAWh7ihIiQWu UZK+3DUObPnNllPbBmKBQ3viiYUmB0ZcbN0daBwHS/uKNrfv4cAquh41Xb4c D2MDMtREJgFz0l/Q7fBIhPGHGi8UewnYVXEzpDkpESYP37zV20nAbtf3CA/W J8KMd/TrLe8ImPStgPG764mwtnveOaiagL2XzK3RCkwCYdu6wbvRBGzwzaFj FYnJoLuiXqqjRcCUwrQFFoZSQT/H5Mr0WQKWmKTb686RBkbarpyP1AiYddNI 5i7JNLiWnn/zjTIBM9vzp/XbvTSwUaNuVZEkYDqPhGjHN6dDUFintySZgGnM seKF9mZAg8iVC0SMHUv0+0tasMsEmcEBXbV6nGNymlYeZkJW0lVd/xp2TLTS vXJbciYEbzPRYStlxz6IdFmntWaCvtANrdVEdqzg1bfJ9v1ZMMFnqfH3LjtW sk29su17FvBRnZGv+9kxCdHt++sf5MDtpVDZlkg2LIQlWp+6kA8ZJFtuwzA2 TGlO9aAMXwH082lNfQliw/T7g0aYUgVwRmpzDoc3G6Yp/vKsi0UB7DWLFlKz Y8NaBoKO0/sKYKQNL1MNNkyWK+/v4fpCMEovbkfZ2bAHlbJB6QnFEPo4qdt1 Yh2lNJ72ic8og7QdH082D6+jlwsLFIcay6Dy2UbxFsY6ul3F0lflSxl86roV VNCyjqblp8/t4S8HGUGZ4wOZ6+jG91izVqNy6EttzjlxbR11mVTS9xkth11l 027E7jX0D8vaqHStAl52nxSLrltFF7uYMjnXqyBC51eakekyGmywoNyjVgfN pS2doQeX0JCAwAZ5fQxS1fPkLd/NozbTMyM3/2uBXwG5LnfuzKHdEjpRIrbv ISO/zXIC/qClDNgYjmiHnxzLQrxNP9EZsU0PG6K64NqDoibZi5Moo/zi2b+F PSBg6dSXFfoVnek99KXkXS8Q7qQSO1y/omp+V34/7OyFP26tR/+Zf0UvPd/2 0qi/FzpCd0XrnvyK2vActf493guhpd06q7NfUN7WZLdpUh+s/z3y/uK1L+iq 6065LWp98P3hbB2XzBgqmRVf9/ZlH7iqTSBDBSOo9jJGCIhngEez6qO6wBHU b5e2SE4qA7zUUujxZiOofd5RKprNgIdqepb6oiPoy6A3Rt/KGPBErT7sXeQw OqNXvmPuHQOK1CIZFa5DqIFLIMeWRQYMqx2zC1IfRFPNbeYk9Prhc3NUtfmu QbTtI/10vFE/fFWbXkfWB1BkZiedcK0ffqhlRq28GEB9js+HvbfshyU12gvH QwNodueTBW6vfuBTH2G/ysdCnS56vPLK7Ycz6sHxMqMMVMJixrptrh9a3Hbf E6pjoK2d9WqjS/2gWvzqwkYMAz2U41bxc60fVPj+UjrPMlAvkpz8LCcT5EZv eDmU9aGxYVoamSJMEPNSvlnq3YsqmnXrxKgyIaWs70TspV70JL8+t8wZJmz7 4rj9gVwvqny9iqf5HBMEzuXTtcbpKO+qIZ1uwASqsMCZaW06+uX6vrfxFkxY fP7z4KEdPShNI8k2N5gJ9yZCOPkXu9Gw2zsNm8OYMLt979flrm5U0bJViRXJ hF9+V1I/BHSj4uTCH9PxTPiq+26LzXQXuvZgu8vzfCZk9KtO6rl1ojp+y09f vmGC3tkCL+2qD+iqo/OtyBUmJDz6Qjtk/wFdXLhzzGmdCaMfxZK59n1A6dIh eefZWeBgGPuyOb4VXVDJ0pkis+DRTf8FJc/3qPj3nT4dvCxo8bzmuO/UW7TY XUhFdh8LaGj8BsfKG9Te4U5e0gEW6BPoEZ+fv0Fd32gGrR1kwWiIZmmKxBtU 4PqH1BIZFqzFKk7xUVpQRuHlmbL/WKBYznNro7MR3fJOyERTkwUP5s7PfQpp RK1LPuxXPo+vpxjsX6faiObnSGns0cbnf7WW4fIcQ40Psz8cvsCC4ad99f1S KGrmb1CxZMwCOxGtgej012i9fNu/4sssWMlsWtLmfY3mVmU/Mr7KAuGyMoWW vw1o5T9Dn3hTFui1hpaV19ehr85eDKu7hevVZeuwlapDT3ed/Cljie8Hw3V6 X/pLVKBvNSzVCt+PL+aSqf61qCblxf2bNri+tRPZoZo1qL770r+wO7i+gKpG 9fpqVN3zwM5mR3w+6qHRjcPVaBr3bbdZJ9x/IeEdrjxV6Pl79Q1K93D/5Wbj zPor0JjB9gc27izYvcdx+vv5CnTQ+62uqQcLNgv8Ur2DlaPcLj1J5+6z4OMP OmtRvwxNih9J2OTFgryPnQFElWeoQOyFc2M4e5e1yfBKlKKkR8+dyh+wQPpu c+DBxSI05LH7TkUfFpAvorLHRgvRghmfnJ84jyjWD6q1FqA3VppTUn1Z8GS5 8ohJch466xD3ddyPBbc/PftkHZCLTtM35Hz9WYC8Lgp2tc9BHVhXZ3kfsuCP X9ZQJGShfzN/NIoFsOCDeVpIyoFMtGuXbHcizlmnk44W8magGq9CdLkDWfBX 5/Ar2/lUtDYnQsUD5xy+vfyB75LR5ebP8UM4X2SIWKclJqLzTQduKgfhepP4 0Re28egOMm9CJM41JjTB7hOx6OwzHZUhnK12cdhObYlBnVJStPcE4/H9toxx jD1BXW0b2m7i/ETvm5Ty7XBUzM21JgHnWWYvy25TKCrASuR+j7PBjZbA9PIA dMR6tes3zlUTz4/0GPqiOxrvs/GEsODQ8Jl6yqwbWqewlHwA50HW+X3D9xxQ 4WHTbCWcsV/8JXq0K6jMk/StajjblYx8P5KnCoWfK+bVcY776PGhkWkBk/uf IoAzF9MkfCX7Lmx2P794BOczrd4KcVe94Ffel207cD411OmQEOoPHJp3Cthw Hr042mTxLQh0KzmzP+H6fDpmth5VDYNjC+2UCpzFzrLbsqVGguHEt08PcB4e CRmxXI2CY0K+omo4S4tGhWoffAoHGZ3v2XB+cCnxqPylOBiS4xmrwfev/Wnm 0PagBOBd9r9tgbNod2Ewe1USHKtxvLYJZ1vuyiPfP6cAoezA62I8PiS1z00D aRnwZa9ROx2P7+Gb34Q6qjPh6kiYxzWcDX0m7Rrbs2D/hU1xQ3h+5NT/2Vqw nIP7/UKsFc+fdta8bTJvHnxhY4UdxXlu8R8WcSAfDhOO2MTh+XZKnmDrYlQI vcn1XqfxfLTBz+637YsgiGN7ZRSer9GOVMFrAcUQM0q+yvBmwecSPvRUZSn4 m0pRNfF8x6KjKFycFcDaHfGHjtfPDzqPlXFaBYQM9Yp14vW1VfBJS55CJcio jjk2uuH+xUf4nL71HO7/agoOc8HtKWHz/o3VsK3xVWY1Xr/IENWg51INpE5u 32qD17et2KPyXTM18GQb30tBB3y9jBBbTKwWVAYsn+jb4vbcwM9rnnVw2by3 1MwCj/84EbT568GbPI12mePj9wekpBTVg/j3+k2KZvh6Rf7Gx1kNsCkTMRnH +xH2zOejuyIKh/ZvUIfxfkb71PDJY6kRMlSX4JAGCzK8vMJ2qTeBupzxAPcZ vH/sUFFujWyCjNMuHRNqLLhhWh8vvL8ZFvMn2/0Ar5fRl/ovLrbg/73e5jqK uP1bzfu/lW8h80Lkdq3dLFgIdHVLWX8LVtf9HHN3siBsn+I+9XPvoOmbsMaC KP6+VfXDmM/voEbBLNhbCNcz9fykHE8rvOozi5PchNt/lVfdsW+DJaZU9PQc EzYqbcMpVW0QGPzf0vwMEzTc9llmL7cBTat599JPJgxuJAv1B7eD8K6dXeMT TGDjDb5/MusjiKjWMu0HmXD+qAnC3d8JYxNcohKNTJipJ1peFO+BHLU2H238 +yggZqafpdYDNJGOXS4PmaDki578bdkDrzN3TsX6MMFf/b5QaGkP1Oy+t9Lk xgTBj7/fNyjTwcI2yL/NignKwwOH9l7she7iHtVE/HsdwFbxZzaUAY/PvspQ 3egH6bKP5xTKGbC5ZDpcdrkfmCZT2W4MBgSfP7YmNN8PUvV7jFZ394NYEb9b 11Q/MFzi6kgN/fCSIWb3va8fJH94PhT+xQRmtjb/y6J+6Og7I3hSfxBmI7Js iLr98PiiQ4o69yik/7tdF/mQAXGoiNkm8VHYWi/MP+3FgHTJ1v29cqOQPGuV c8qVAZVre56bXxoFuuX2R8O3GcDMZbX6Z49Cd90B/h5tBuxZUF/ElD5DRFTo 89KtDKiLE9E/YTkGZvc6i27l4Oe5/veciuhX8KT3fzhb0QsPY/v4zolPwhtL rRLjph7o/dJWTRv9CS4aiju0HnZBpaLyqtv+P+D2KMFl8lU7cPQ4qr4ymAP5 Y+YfAtLeQ5lCiv7lsnmoSG537L3ZAss1Gc+Dxhbhv/aB28uNGGSyJY1STy9D QGtxikdIHUxY2ZmI+6wCuQXc336vgmHl3xuDwavge/pmi0dvFTC4nbPin6xC nvzueGWsClqeu01szlqF01uo7V/jqyBjw99prWUV3gg26w2erYIr8YmBA9Q1 OBXHlqJb9Bw63r4tfRq3Btf6ad6aHpVQI7FrnevZOjQ7XYwhQjl0tNFX/F6s Q+NKXVPS4XKYcAr6t4ytw7WLA4eQ7eUg/PrH32n6Otgpzck5/SgDT6OaH13/ 1sE5w//t6ytlgASfZyWc3oDLBS8Os8MzaPvuUnVgaAOQy+K7hnaUwMxFC4W9 QWzI/vte8kFyBfDf1WFG5CM2pLnS6N7frQXgc8PYfSWCDTGr+/fh/ko+bLbV rO+JZ0N2KWVEdbbgfc9XStWvkA15nfzgYsKlfLAumtcabmdDxr5c2JUakAdj 64G3EvjZEe14Zy2JXzlwkLhBIgqzI0euV0769uWAE8U9/44oO7J2WlphriEH 2ARsps5IsCPffr3KF3mcAzsldRznFdmRc8urZfcP5cA1g61e+lfYEQfDwSFL h2zoy8+L2ZTJjpD+jm9kEbPgWdyLMUYuOxLKQ98yOZ0JQYHvj2QWsSOeRwT/ ne3LBEXzqU6FKnbkyS9J4Qt5mZAgJr3p+jt25GTrqbZgzUy4ElsdUPGTHbml FEcJfpoBw/4tLkbKBMTa+eyJAvc0qHHqaxEHAmLUaBZ0WDcNIm6M8/9QIyBf z7I8hiXSAE5yVfpoExCfU1uGPtBTIePf+V8FNwiI4fAJtqYjqWDmSLdcCSIg 7C/NaNwLyTBhMmacQScgU9dNdWXTE8GO97i2IZOAaJSkUns8E2G2JeYU1xAB UU2Z7Eu+lAirh05LOY4TEPW/+uL5fInAt5xPQP4RkISv/mKJIQmgEmdfOiLG gUgWvkjo9IyH6I4lwk4bDoRBmpkt9Y4FYX+9pR4HDsTk0Fqx4I1YSFUo+hl0 lwNxefA0IVM1FgpSrjJ/eXEgGnt4oiVIsfDK5nXp60gOROD27bKB8KfwnRxw ybSaA7n6yHZuODcGTsKWZ6lsRMQn6YGU1+8oWM/hfMtGIiK11jEds4woQKls w+YUIvKppKso8HUUIIwZ7oN8RMQx8W3VRngUqNn32NfsISJ8bQ6Op6SjQCM5 VqrzDBEJzf397OfdJ6C3KFLKFk5EgvVu3LfbFwF8JgJvzKOIyNEErYZNq+HQ 07Rp6G0sEfGu0X460h0OhhFrm8LTiMhAyVFdUe9wMJIYsdtWTkTa1s79mWY+ hisGWYfl6EQk9sjs4eb4MLhVdqDEfBsJ6VNABylKoVC9XuskIUZCeNzox+J4 Q4Gso3lsYjcJKaod8jCeCoHCaesmm8MkRLrYhO6WEgK/JIuZTkBC3LNDBiU5 QsAjR4rka0FC6AVJWXsGgiAiUc40pYKEzO/fnbFYEgAj35v2mNaQEJXhWrXa sACQ/c9gcmc9CTnGQdmXbxMAdMbde9ktJESm6sHAZskAEBaoflTUT0IiN8ru shU8hOyIYy9q10iIVp2UKfLMH2ofqvD0aZKRhheUHtaAL6gH2i2d1iEjBpVP p1iYL3QHpYzW6JORU1b+q6t5vjAVulqecJWMhB84fq/4ri+IPmnQu2ZPRoye z0TkbvYFvxSVmC9PyIhQ+xvdwVhvOFetsnW2n4wk559RTXzhCYwau3WzT2RE 51eo0vswTzCvTRmnj5IR8z5nsvwNT/CqX62pniQje+2ecjVSPOFZY4OxxwoZ iTUP3F14/T7wd6gksu3kROJy+QmuWz3g07iK6BZLTqRtIf2Q7DNX2FpaVWRt w4lo3BwJlXnkCrp3Dyu1OHAipOzNdjctXaFpQ8TIw40TifUldV3d6QqFwiuR X0I4keqG1OKcGBdwPfeSo7aYE9GUObNmEHgPeJ4p/LjxhxOxdUq/mxrmDOfu lXrUz3MiWbnXArztneGhsgTX1mVOJLctVyBM1xkW3gpItBG4EHrP2oiEgDMM jcyZKghwIaaW+25eS3eCIt7KHsoxLuTpamRO+itHUHeRrqv04kI6EXOp47IO sFni5IKtHxdy3VZvuf+fPbB6teUkgriQz079Zu3N9uAgb18UH8mF9FmHS9Rd sof4ueIkrywuZPSmlUVKkB1MOUl6nnnPhRhdRrgEZ20g0mGvygA/Bdn80IOz jngbrojJu8cIU5Dh49/tbJhWsLdDrUprBwXZwVy/cKvECmqlzA+j+yjI8UzZ P3IXrWBsOlM0R4mCaCq8lpEtsgR5251r9tcpyLtJY0G9mxYwYLX9NXsxBTmR OxPjxm4Oo62tojZlFITJsXD134gZfDvk4dnznIKs82h5lL82g5nf/f9lN1CQ 6+/jHr/yMgOye+xz9Q4K8mVOV+D8yk04GsJTGPyHgjTG3Sn4y34THheQn3L/ R0W80j9Ey1uZQjS1ZtZFhYr4eemrecqaQrydhd4wQkXkbqhcEVk2gSzZls1l mlQk5JB2vUWECbys9Qu9cJWKRJs32wrWX4Px96veMd5UZArzcbu79yrA5Kz1 tjdU5K/42cSRo5fA3Xadg/SBitz/qZx5knAJyn9S0mY6qAh6nMd2ucsYxGfF e94xqUhhqsFo4B1jYFvRUXadxrmyqWmw3AiaNhVT6fw0hJbblMSufhGWI2py XgvTEOmdF6rHhS6CHG/TyaIdNOSO+P7rO6cNIUuQ5ey3n4ac8KuWCY01hIdi nIMyx2mIECkwQWbaANRlzYsfm9GQNzmpBRcK9MGr0uG0uxUNCQ0UjJD204cq +fsj5nY0JCHkY5zxFX3YqxTFf9yVhpyWnuEJ5dYH0inUczKUhnjZbLy/6qYH bw1EtM5U0JBf93pzDS5dgPW+feNHamgI0WNuW6HCBVC8JOe7o56G7OK12VDl vwB51zSr/rbgdqLRU/c0XQi2cBPNZtKQ/U0pDo+f6gA24V8TMURDqC9s+S8a 6MCSdcSF+2M05HbFgl0qnw7cdsgN0JumIYu/nLDCaG3ImCkXO/GHhhjovVq3 NdAGpnND7YEFGmJIcL9fJKANPPPv9AVWcP0OtMu3GFrwf/ePyP/fP/4P0yTd aA== "]]}}, { {Hue[0.3], RectangleBox[{-3.4000000000000004`, 0}, {-3., 0.02168256721595837}]}, {Hue[0.3], RectangleBox[{-3.0000000000000004`, 0}, {-2.6, 0.07505504036293281}]}, {Hue[0.3], RectangleBox[{-2.6000000000000005`, 0}, {-2.2, 0.2693642004136366}]}, {Hue[0.3], RectangleBox[{-2.2, 0}, {-1.8, 0.47034491960771224`}]}, {Hue[0.3], RectangleBox[{-1.8, 0}, {-1.4000000000000001`, 1.2425778904529987`}]}, {Hue[0.3], RectangleBox[{-1.4000000000000001`, 0}, \ {-1.0000000000000002`, 1.7270998732403762`}]}, {Hue[0.3], RectangleBox[{-1., 0}, {-0.6000000000000001, 3.207352058175995}]}, {Hue[0.3], RectangleBox[{-0.6000000000000001, 0}, {-0.2, 3.306591500433651}]}, {Hue[0.3], RectangleBox[{-0.2, 0}, {0.2, 4.444926279271465}]}, {Hue[0.3], RectangleBox[{0.2, 0}, {0.6000000000000001, 3.219861231569818}]}, {Hue[0.3], RectangleBox[{0.6000000000000001, 0}, {1., 3.2582226966442054`}]}, {Hue[0.3], RectangleBox[{1.0000000000000002`, 0}, \ {1.4000000000000001`, 1.7788044566015078`}]}, {Hue[0.3], RectangleBox[{1.4000000000000001`, 0}, {1.8, 1.1917072519847887`}]}, {Hue[0.3], RectangleBox[{1.8, 0}, {2.2, 0.47451464407231964`}]}, {Hue[0.3], RectangleBox[{2.2, 0}, {2.6000000000000005`, 0.2193275068383481}]}, {Hue[0.3], RectangleBox[{2.6, 0}, {3.0000000000000004`, 0.0617119220761892}]}, {Hue[0.3], RectangleBox[{3., 0}, {3.4000000000000004`, 0.0308559610380946}]}}}, ImageSize->500]], "Output", CellChangeTimes->{3.4292571862390347`*^9, 3.429261186631019*^9, 3.4292615491522493`*^9, 3.42926170426311*^9, 3.4292618210939093`*^9, 3.429261954664555*^9, 3.429262012158197*^9, 3.429262049062015*^9, 3.429262241886396*^9, 3.5223853680631323`*^9, 3.657329246382769*^9}, CellLabel->"Out[2]="] }, Open ]], Cell[CellGroupData[{ Cell[TextData[StyleBox["\n24.2 Approximation for TOPIX monthly returns", FontWeight->"Bold"]], "Subsubtitle", CellChangeTimes->{{3.6573293006468477`*^9, 3.6573293075737333`*^9}}, FontColor->RGBColor[0, 0.501961, 1]], Cell["\<\ \:6570\:7406\:30d5\:30a1\:30a4\:30ca\:30f3\:30b9\:7b2c22\:56de\:306e\:4f8b\ \:3092\:4f7f\:3063\:3066\:3001\:4e8c\:9805\:5206\:5e03\:306e\:548c\:306e\:6975\ \:9650\:304c\:3001\:6b63\:898f\:5206\:5e03\:306b\:8fd1\:3065\:3044\:3066\:3044\ \:304f\:69d8\:5b50\:3092\:898b\:3066\:304a\:3053\:3046\:3002 TOPIX \:306e\:6708\:6b21\:7c97\:53ce\:76ca\:7387(\:ff1d\:ff11+\:53ce\:76ca\ \:7387)\:306e\:671f\:5f85\:5024\:3068\:5206\:6563\:306f\:ff0c\:305d\:308c\ \:305e\:308c 10.004719, 0.05152^2 \:3068\:63a8\:5b9a\:3055\:308c\:305f\:3002\ \>", "Text", CellChangeTimes->{{3.6573293936925163`*^9, 3.6573294605978317`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"pud", " ", "=", " ", RowBox[{"Part", "[", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"p", " ", "u"}], " ", "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "p"}], ")"}], " ", "d"}]}], " ", "\[Equal]", "1.004719"}], ",", RowBox[{ RowBox[{"p", " ", RowBox[{"(", RowBox[{"1", "-", "p"}], ")"}], RowBox[{ RowBox[{"(", RowBox[{"u", "-", "d"}], ")"}], "^", "2"}]}], "\[Equal]", RowBox[{"0.05152", "^", "2"}]}], ",", RowBox[{ RowBox[{"u", " ", "d"}], "\[Equal]", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"p", ",", "u", ",", "d"}], "}"}]}], "]"}], ",", "2"}], "]"}]}]], "Input", CellChangeTimes->{{3.4292573118597*^9, 3.429257311940941*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[3]:="], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"p", "\[Rule]", "0.5327998884591374`"}], ",", RowBox[{"u", "\[Rule]", "1.0529632168218028`"}], ",", RowBox[{"d", "\[Rule]", "0.9497007910858807`"}]}], "}"}]], "Output", CellChangeTimes->{{3.429257297644267*^9, 3.429257313054131*^9}, 3.5223856388528223`*^9, 3.6573293211137333`*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[3]="] }, Open ]], Cell[BoxData[ RowBox[{" ", RowBox[{ RowBox[{"Log", "[", SubscriptBox["R", "M"], "]"}], RowBox[{ "\:306e\:671f\:5f85\:5024\:3068\:5206\:6563\:306f\:305d\:308c\:305e\:308c\ \:6b21\:306e\:5024\:3068\:306a\:308b", "."}]}]}]], "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"m", "=", RowBox[{ RowBox[{ RowBox[{"p", " ", RowBox[{"Log", "[", "u", "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "p"}], ")"}], " ", RowBox[{"Log", "[", "d", "]"}]}]}], " ", "/.", "pud"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[4]:="], Cell[BoxData["0.0033854930162360054`"], "Output", CellChangeTimes->{3.429257317389123*^9, 3.5223856416524343`*^9, 3.657329339974321*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[4]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vv", "=", RowBox[{ RowBox[{"p", " ", RowBox[{"(", RowBox[{"1", "-", "p"}], ")"}], " ", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Log", "[", "u", "]"}], "-", RowBox[{"Log", "[", "d", "]"}]}], ")"}], "^", "2"}]}], " ", "/.", " ", "pud"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[5]:="], Cell[BoxData["0.0026519551431897544`"], "Output", CellChangeTimes->{3.429257320051652*^9, 3.5223856480769377`*^9, 3.6573293422751417`*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[5]="] }, Open ]], Cell[BoxData[ RowBox[{"1", RowBox[{"\:30b1\:6708\:3092NNN\:500b\:306b\:5206\:5272\:3059\:308b", ".", RowBox[{"(", RowBox[{"\:65e5\:3005\:306e\:5834\:5408\:306f", ",", RowBox[{"NNN", "=", RowBox[{"21", RowBox[{"\:3067\:3042\:3063\:305f", "."}]}]}]}], ")"}]}]}]], "Text"], Cell["\:7b2c\:ff12\:ff12\:56de\:306e\:30d1\:30ef\:30fc\:30dd\:30a4\:30f3\:30c8\ 22\:30da-\:30b8\:306b\:3042\:308b u1 \:3068 d1 \:3068\:3092\:4f5c\:3063\:3066\ \:304a\:304f\:3002 ", "Text", CellChangeTimes->{{3.657329481593343*^9, 3.6573294868093033`*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"u1", "[", "NNN_", "]"}], " ", ":=", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"m", "/", "NNN"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Log", "[", "u", "]"}], "-", "m"}], ")"}], "/", RowBox[{"Sqrt", "[", "NNN", "]"}]}]}], "]"}], " ", "/.", "pud"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[6]:="], Cell[BoxData[ RowBox[{ RowBox[{"d1", "[", "NNN_", "]"}], ":=", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"m", "/", "NNN"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Log", "[", "d", "]"}], "-", "m"}], ")"}], "/", RowBox[{"Sqrt", "[", "NNN", "]"}]}]}], "]"}], " ", "/.", " ", "pud"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[7]:="], Cell["\:5b89\:5168\:8cc7\:7523\:306e\:6708\:6b21\:7c97\:53ce\:76ca\:7387\:306f\ \:ff0c\:4ee5\:4e0b\:306e\:901a\:308a\:3002", "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"rm", "=", RowBox[{"N", "[", RowBox[{"Exp", "[", RowBox[{ RowBox[{"Log", "[", RowBox[{"1", "+", "0.038745"}], "]"}], "/", "12"}], "]"}], "]"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[8]:="], Cell[BoxData["1.0031727938306954`"], "Output", CellChangeTimes->{3.4292573290538387`*^9, 3.5223856617275057`*^9, 3.65732949927078*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[8]="] }, Open ]], Cell["\:3053\:308c\:306e( 1 / NNN ) \ \:30b1\:6708\:9593\:306b\:304a\:3051\:308b\:7c97\:53ce\:76ca\:7387\:306f", \ "Text", CellChangeTimes->{{3.522385673944131*^9, 3.522385692471212*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"r", "[", "NNN_", "]"}], ":=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"Log", "[", "rm", "]"}], "/", "NNN"}], "]"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[9]:="], Cell["\:30ea\:30b9\:30af\:4e2d\:7acb\:78ba\:7387\:306f", "Text"], Cell[BoxData[ RowBox[{ RowBox[{"qu", "[", "NNN_", "]"}], ":=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"r", "[", "NNN", "]"}], "-", RowBox[{"d1", "[", "NNN", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"u1", "[", "NNN", "]"}], "-", RowBox[{"d1", "[", "NNN", "]"}]}], ")"}]}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[10]:="], Cell[BoxData[ RowBox[{ RowBox[{"qd", "[", "NNN_", "]"}], ":=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"u1", "[", "NNN", "]"}], "-", RowBox[{"r", "[", "NNN", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"u1", "[", "NNN", "]"}], "-", RowBox[{"d1", "[", "NNN", "]"}]}], ")"}]}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[11]:="], Cell["\<\ \:3000 \:3000nD\:56de\:7e70\:308a\:8fd4\:3057\:305f\:5f8c\:306e\:682a\:4fa1\:53ce\ \:76ca\:7387\:306e\:5206\:5e03\:306f\:ff0c\:4ee5\:4e0b\:306e\:901a\:308a\:3002\ \>", "Text"], Cell[BoxData[ RowBox[{ RowBox[{"dist", "[", "nD_", "]"}], ":=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"nD", "!"}], " ", "/", RowBox[{"(", RowBox[{ RowBox[{"k", "!"}], " ", RowBox[{ RowBox[{"(", RowBox[{"nD", "-", "k"}], ")"}], "!"}]}], ")"}]}], ")"}], "*", RowBox[{ RowBox[{"qu", "[", "nD", "]"}], "^", "k"}], "*", RowBox[{ RowBox[{"qd", "[", "nD", "]"}], "^", RowBox[{"(", RowBox[{"nD", "-", "k"}], ")"}]}]}], ",", RowBox[{ RowBox[{"k", "*", RowBox[{"Log", "[", RowBox[{"u1", "[", "nD", "]"}], "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"nD", "-", "k"}], ")"}], "*", RowBox[{"Log", "[", RowBox[{"d1", "[", "nD", "]"}], "]"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", "0", ",", "nD"}], "}"}]}], "]"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[12]:="], Cell["NNN=21\:306e\:5834\:5408\:306f\:ff0c\:4ee5\:4e0b\:306e\:901a\:308a\:3002\ ", "Text"], Cell[BoxData[ RowBox[{ RowBox[{"cum21", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"dt", ",", RowBox[{"Apply", "[", RowBox[{"Plus", ",", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"dist", "[", "21", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}], "<", "dt"}], "&"}]}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "1"}], "]"}], "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"dt", ",", RowBox[{"-", "0.3"}], ",", "0.3", ",", "0.001"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.42925661682397*^9, 3.4292566374588003`*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[13]:="], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"G21", "=", RowBox[{"ListPlot", "[", RowBox[{"cum21", ",", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"ImageSize", "\[Rule]", "450"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"RGBColor", "[", RowBox[{"0.2`", ",", "0.8`", ",", "0.4`"}], "]"}], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "}"}]}]}], "]"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[14]:="], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.2, 0.8, 0.4], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2n1QlVUeB3DWHHJch5jGdRzHjFpyXNOi0k2zfLQyJXPBl1p1HJdh2JZx nLrbMA3DOi4qFZkVKbqoYCAIkmTAukiucS8sa0guketslppkb75kYGi+6z7P 73v8fqd7/9D5DPDcc55zzu+8/M4d6c/P+mOfmJiYef4/wf8P2Oe/4Rj3eXVy 2jedd8pHU17/23O3ymMX7koe0Ed+bfF3l6vP7Ke/zBm4feqX8oP2QDl42oqI /NWWja0JtfL4HW0vNr0tv9lybsSCN2W/cIcuLpUnWAHlt04v8cYulK10M+RH +n9aHnpEXjO47zNxo+UTw+/rVzNU9qzC8trHghp/Qp+a2TjspVOyvb5DslW3 Xbbi7ZLtcdXyevvI3VV7pj/4qjyloffqgWw5eHsvZMp+ZdPj58rTrEHkTfZA +az/tBPD5ScH9Ln7lUFy6ZB7jyTGyj/5rdFyrpN+Cg1Mb7YCyhdmBy0s/84v 3fgdckUoaBH50tJFu7PWyKnWYeRKq7B8JWjedHlW0Bwz5a3B65ssXwuqe588 xzqg/I69QBkfuWbo/IwJRz+m51qH/Th8LWFbXcknyyYGvam+RPYbx++S8gLr 0HI/e6Bs3X+IbN3pYgdtzfOZbNVtlDNsQMjxVkDZf7l+j5czbcDIwejNGShH 2sv8Fv0PjeEu2/Cpl607viVb84Zke30pslX3XtmKFyfb407vC39Q/fvC3uc/ mrgPHzrbBqycGLvMH6KyhYtFsg2/ZNm68wjZukc/OdcG/Ef0qPoSfwTJBzvO +z1czrOAICdZA8uHrYAy4q2M+CojnrbTiJ8y4qWM+CgjHsqIfzLinYz4tjd8 U2VP3foJfT3EMxnxS0a8khGfZMQjucTij5xsHVpGfGmjEU9kxA8Z8UJGfJAR D2SMfxnjXbbh2/0hjeEm2/DYLlt3fl227rdYtu4yXbbmvfvD8F2H5lVX3PyA Z83RX7bXd2IPjerKVrwq2R73ivysfeSgs5RNkYPRdiRRXmQBQfYr63fof9M2 /bbI1vvKZJselskWbtNkC3+ebOFqmGzh5WorbeHgiGzDd7dsw22jbMMjR7bu PF+27je+NbyiOXFGR+U8z7rLYHlk0Lzn/0Vbc3wq2+trkK26a2UrXpZsj5st Y30lYz0lY/3UQmM6lbE+krEekrH+kbHekbG+kbGekbF+aaYRXmSsT2SsR2Ss P5rD9TcdnTLsTzmeDY+psnXn4bJ1v1jZuss3ERrNK1tzlMspCIC0VTddtuJN lu1xCfK168EnTGP+ljFfy5ifZczHTTTmXznePfCGMb/KmE8/oDF/ypgvZcyP MubD3eGELy41Nq1f62H+kzHfyZjfZMxn/6Qxf8mYr+R8mwDkLhtwu+hxNv/I BZgg6OM2IOVJ9gLfp4ts/pB7bMDK02x+kEttPmikL9iAllPRIPRWi+9yjMXz nfRci98y4rWM+LwzfDKS8ef6r2pcPG6gEX9lxFsZ8VXG8P0HjfgpI17KiI87 aDSvjPgnI97JiG9/p5db8eTPLX7J91u8kldafKqnj1k8kh+y+COvRoemT1p8 qaMftXgib7D4URf+VWXc3uQ7It6PFi/kJy0+1NKbbYDIl2z8y7MQMOk5Nhzf o/vaeJbRXbbTGK8yqvMujfEoY/zV0BhvMsbXNhrjScb4eYfGeJExPqppjAcZ /X8rjf4uo39X0f2sP1eFt0yLW7GzuMNrtP5bSWdaf5UHW//cQrdZf6ygs63/ ySOsv5XTB61/yfnWnzbT46z/yMetv5TRRdY/5GnWH0rpC9b+cioWxHStte8m Oh4bNDpk7VdMd2KBQSfZ4zbQBVjw0j32/ov0/diAhePHDPzlbYM+82rt/a6j 47GAoEP2/grpTntfa+gkez+r6QJssOgeq38BXWr1fYNOs/qtohOsPivpLvu6 fDpi5X2ZzrXy5dGTrDzLaWyYc/X79n1L9PO/Bs/PjnpeVtTfh6J+PzPq52lR TpVvnBMU/fr6bQOO3fi593OnyXh+1M9DtCtf1O9n6+eoX9Tf59Lu/UQ9L492 7zfq+fn6e7RP1Pet0t+jfaO+v4AuRf+IKs9qugv9K6p8hXQC+mdUedd5t/Ru Gtk69jsvDf2bRvmL6FKMDxr12UB3YXzRqF8xnYDxSaO+m/T9GN/6fqt/KZ2K +KDyIH7QPYgvKh/iD12A+KTyIn7RSYhvKj/iH92J+Kj6IH7SIcRX1Q/xl45H fPZuX3EgpXzCKfe+5VrEdxrvX07F/ECjPeQezC+0m39oNz/Rbv6i3fxGu/mP dvMj7eZP2s2vtJt/aay336OxnJZxXldL4/xPxnmijPNJGeeddd7oiob22P2n vWKsP+jHsT6hv8f6hS5EheiHsf6hv8b6iF6F9RM9Busr+jDWX3Qe1mf0KKzf 6ANY39FLsP6jE7E+pPdh/UhnYX1JD8X6k27F+pRejPUrPRDrW3o31r90BtbH 9ACsn73ypLazvaO7vR1YX9MLsP6m+2J9Ttdg/U7PQYehr2D9T1dgf0A/hf0D fRb7C7oY+w/6cexP6O+xf6ELsb+hH8b+h/4a+yN6FfZP9Bjsr+jD2H/Redif 0aOwf6MPYANAL8H+zzs/6/3yjki3l4j9Ib0P+0c6C/tLeij2n7Tbn9Ju/0q7 /S3t9r+02x/Tbv9Mu/017bbLNGbzCI3xLuM8X8b4l5EvkBEPZOQjZMQHGfmO ZhrxQkY+pdn7y4U/jF98ptvFD7kH5yM04olchPMVGvFFnoTzGRrxRj6O8x0a 8UcuwAaTRjySx+F8iUZ8krtwPkUjXsn5ON+iEb/kJJyP0Yhn8kGcr9GIb3Iu zue8itza36y92u3inTwC53s04p/ciQMkGvFQzsb5Io34KCfgfJJGvJTbcL5J I37KIZyP0oin8mCcr9KIr3voCM5nacRbORPnuzTirxyP82Ea8VhuxPky7c6f vc7L1RlN17tvnE/T7vyadufbtDv/pt35OO3Oz2l3vk6783fanc/T7vyeduf7 tDv/p11+gHb5A9rlF2jkO/fSyI/KPyJ/QT+B/Aa9AfkP+gfkR+hHkT/x6get r77iex3yK/RJ5F/oicjP0KuRv6G/RX6Hfgj5H/oNHODSx5A/on+L/BK9Evkn +gvkp+j7kb+iX0Z+i/4c+S/6HuTH6OXIn9H/Q36NHon8G70U+Tl6P/J39HDk 9+gc5P/oDuQHvV/YPNLj3Yn8If0i8ot0O/KP9DDkJ+kXkL+k9yC/SQ9B/pN+ DvlRugX5U3oQ8qv0IuRf6SbkZ+lbkb+ln0V+l96F/C8dhwFHpyN/TDcgv0z3 R/6ZXoj8NF2P/DUdi/w2PR/5b3o78uM0/u+ktyG/Tj+N/Dt9Hfl5uhr5e3o2 8vv0VeT/6SrcD6Bn4v4AfRn3C+gtuH9Ap+B+An0R9xfoctxvoGcgYUOfx/0I ugz3J+jpuF9Bn8P9C/pt3M+gk3F/g+7F/Q66BPc/6Km4H0Kfwf0ReiPul9BT cP+EdvdTaHd/hXb3W2h3/4V292Nod3+GdvdraHf/hnb3c2h3f4d293tod/+H dveDaHd/iHb3i2h3/4h295Nod3+JdvebaHf/iXb3o2h3f4p296tod/+K/j8u VepS "]]}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->450, Method->{}, PlotRange->{{-0.3, 0.3}, {0, 1.0000000000000002`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.429257364841791*^9, 3.5223857383005733`*^9, 3.657329515693202*^9}, Background->RGBColor[ 0.8778210116731517, 0.8778210116731517, 0.8778210116731517], CellLabel->"Out[14]="] }, Open ]], Cell["NNN=7\:306e\:5834\:5408\:306f,\:4ee5\:4e0b\:306e\:901a\:308a\:3002\:ff08\ \:7d2f\:7a4d\:ff09\:5206\:5e03\:95a2\:6570\:306e\:968e\:6bb5\:304c\:3001\:7c97\ \:304f\:306a\:3063\:3066\:3044\:308b\:3002", "Text", CellChangeTimes->{{3.65732956140104*^9, 3.657329582419194*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"cum7", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"dt", ",", RowBox[{"Apply", "[", RowBox[{"Plus", ",", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"dist", "[", "7", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}], "<", "dt"}], "&"}]}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "1"}], "]"}], "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"dt", ",", RowBox[{"-", "0.3"}], ",", "0.3", ",", "0.001"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.429256656502079*^9, 3.4292566649222717`*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[15]:="], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"G7", "=", RowBox[{"ListPlot", "[", RowBox[{"cum7", ",", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"ImageSize", "\[Rule]", "450"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"RGBColor", "[", RowBox[{"0.2`", ",", "0.6`", ",", "0.8`"}], "]"}], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "}"}]}]}], "]"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[16]:="], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.2, 0.6, 0.8], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2nts1eUdx3HGCCGEkMYQQwghnWlIo2yg80K97IATuekolxlGGGsaRggh 7sR0hhDCEDutDLUCOsbNXrgqw9ohImO0dqwiMNYpUaYw0XkBlVEvDFGRnfN9 P34+ye/8AXml7e/8ntv3uXyf71X/asove/bo0eNnhX+K//8wPq+29Uifh0ZX vdd1hf3WpId/f/dl9nWz9ozv19P+3fwPvtr2ySvy2wsH7Bj7tn1DPNAuPu3+ dvs/m9buL22xK3YeuHffk/ajHefKZz5qF17uzQuL7ZviBe3HzizKXTfLjre7 076l7+vN+VvslQN73dX/+/bpoVf32T7YzkWB7cd/XCzxP+WPJu8e8tuP7Ki+ N+0o7kE7Xm+PHY/bZv8hPvbZLZ0Tb3jIHrPrs4tHF9jF2rtnrl0obHXJdHtc NIi9IR5of1542umh9oR+Pa968HK7YdDwE2W97f8VWqPjXJd8Bw0sN8UL2l9M Lbaw/ZPC21XstDfmiy1if7l43t6alXZldBh7cxTY/rrYvNX2lGJzTLa3Fqtv tP1NsbhX29OiA9pPRQXafOztg2fMvumtf8jTo8Paxd7Uut4uNE6hS9ozo0Pb feKBdnT/QXZ0pwtH5Gief9lR3N327BgQdkm8oF2o3EKPt+fGgLGLo3fhALv9 YGOhRf8uM9ztGD6tdnTHx+xo3rwd1TfJjuIOt+P1+tvxuDOH5cN85AUxYO2y 3vcVhqgd4WKeHcNvvB3dudyO7tHHXhID/pA8rHV9YQTZx46cL/RwuzYCgj0i Gtg+Hi9oE29t4qtNPD2YiZ828dImPtrEQ5v4ZxPvbOLby5l4ZhO/bOKVTXyy iUf2+og/9vjo0Dbx5UAmntjED5t4YRMfbOKBzfi3Ge92DN+zL8kMNzuGxw47 uvPDdnS/+XZ0l4l2NO9VdjRHXzuq73SnTHHteL0tdjzuQXtOfOxiZ2kcYxdH 24kye14EBLtQ2EKH/psc02+HHb2v0Y7p4T47wm2VHeEvZ0e4GmJHeLm4X45w cMKO4bvXjuG21o7hsdCO7jzDju5XYUd3GWhfWWze83+Vozlet6P6dtlR3Mft eL0aOx431WZ9ZbOeslk/dchMpzbrI5v1kM36x2a9Y7O+6Whr7nzhF/nNv86x nrFZv7woE15s1ic26xGb9Ycdw2OsHd15qB3dr7cd3eW9dpnmtaM5mu1JBEA5 ilttx+uNtuNxpfY3l4qfNpn522a+tpmfbebjfTLzr12SHvitmV9t5tO/yMyf NvOlzfxoMx/ulZn/bOY7m/nNZj77s8z8ZTNf2XUxAdgnY8DtkUfG/GPXM0G0 9RxePqHi1S25UzEg7VFRgS/Iq2P+sLtjwNrjYn6wG2I+2C1/EQParqRB5K0R 3+0eEc+fl6dH/LaJ1zbx2SYe75KJvzbx1ia+2gzf52Tip028tImPO2Wa1yb+ 2cQ7m/j2J3lpvJ79RsQv+5qIV/ayiE+t8jsRj+wbI/7YK+jQ8ocRX56Vb414 Yq+J+GF/GvHCnhDxoUVuigFifxnjv6VtzqEL7w9d/1JuCgFTnhbD8Rm5V4xn m+6yQ2a82hTnjzLj0Wb8bZcZbzbj62mZ8WQzfp6SGS8242ObzHiw6f9bZfq7 Tf/eIveJ/mzvjv672eWP/moPjP65yeWP/rjR5Y/+Z5dHf2t2+aN/2XXRn5pc /ug/9qnoL40uf/QPe1z0hwaXP9rfrmRBLLdE+26QS9igyflov3VyFwsMeUQ8 bo1cz4K3raXfsbrvXn881x31v1quZAMmt0T9PiGXsICQ81F/q+SuqK+V8oio nxVyPRssf3+Uv15uiPI+IldF+ZbLpVGeZfLJ+Lo6uT3e9wF5SbxfrTwq3mep zAJ6iX8/vm+Rf/6b4vMXZJ5Xk/n7fOb352Z+XpVxpZ0+mZ/nMn+fyzw/8/N8 LvN+md9fkMuUL/P3S3KZ+sk8rzaXqd/M8+v897RP5vuW55oqBo08lPsg1077 ynx/vdxA/5B5nxXySfqXzPutkkvpn/4++q9cRf/298f7r/b3Mz78/Ywffz/j y9/P+PP3Mz4z5d3g72d8Z8rfIFcSHzL10Sh3E18y9dMk1xOfMvXVLI8gvmXq b6PcRXzM1OcmOU98zdSvXUJ8ztS33UJ8z9S/Xcn8kGkPu5v5RU7zj5zmp1xt 3cTK+39+5tv5S07zm5zmPznNj3KaP+U0v8pp/pVZbz8js5y2Oa9rkTn/szlP tDmftDnvfFZex/pDvo31ifwx6xd5FQWSb2b9I7/L+khezvpJvpb1lXyc9Zdc y/pMHsb6TT7K+k5exPpPLmN9KB9m/SjXsL6UB7P+lPezPpXns36VB7C+lfey /pVnsz6W+7F+lneyvpZnsv7O3Z6vfu2u5rO5XqzP5e2s3+VpdBj5a9b/8kb2 B/Id7B/kz9lfyOvYf8i3sT+RP2b/Iq9ifyPfzP5Hfpf9kbyc/ZN8Lfsr+Tj7 L7mW/Zk8jP2bfJQNgLyI/Z9cxv5QPsz+Ua5hfykPZv8pp/2pnPavctrfymn/ K6f9sZz2z3LaX8tpuywzm7e7vdm/y5zn24x/m3yBTTywyUe05+IY4NLZFB9s 8h0vysQLm3yKTfywuzkfkYkn9mrOV2Tiiz2K8xmZeGOf4nxHJv7Y9WwwZeKR PZLzJZn4ZJ/kfEomXtl1nG/JxC97BOdjMvHMPsb5mkx8s5dwPicT7+xyzvdk 4p/dxQGSTDy0F3C+KBMf7VLOJ2XipX2A802Z+GnnOR+Viaf2QM5XZeJrp9zO +axMvLXncr4rE3/tEs6HZeKxvZvzZTmdP8vpfFpO59dyOt+W0/m3nM7H5XR+ LqfzdTmdv8vpfF5O5/dyOt+X0/m/nPIDcsofyCm/IJPvfFkmP2p/Sv5Cvp38 hryG/If8X/Ij8q3kT+QnyK/IH5J/kX9EfkZeQf5Gfp/8jnwj+R/5EQ5w5XfI H8nXk1+Sl5F/kv9Nfkq+hvyV/AD5LfkN8l/yD8iPyUvJn8mvkV+TryT/Ji8m Pye/Qv5OHkp+T15I/k8+Qn5QvoL8oXwv+UX5IPlHeQj5Sfke8pdyJ/lNeRD5 T/lu8qNyB/lT+XLyq/I88q/yPvKz8mXkb+U55HflPeR/5f4MOLma/LG8i/yy 3Jf8szyL/LTcSv5a7k1+W55B/lveQX5c/k7M513y0+TX5Z+Sf5cvkZ+Xt5G/ l6eS35cvkv+Xt3A/QJ7M/QH5K+4XyJu4fyBP4n6CfIH7C3Iz9xvkO0nYyOe5 HyE3cn9Cnsj9Cvkc9y/kJ7mfIY/n/ob8Gfc75PXc/5DHcj9E/oT7I/Ja7pfI Y7h/Iqf7KXK6vyKn+y1yuv8ip/sxcro/I6f7NXK6fyOn+zlyur8jp/s9crr/ I6f7QXK6PySn+0Vyun8kp/tJcrq/JKf7TXK6/ySn+1Fyuj8lp/tVcrp/Jf8f +Q+sYg== "]]}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->450, Method->{}, PlotRange->{{-0.3, 0.3}, {0, 0.9999999999999999}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.4292573807400713`*^9, 3.522385750325333*^9, 3.657329556060546*^9}, Background->RGBColor[ 0.8823529411764706, 0.8823529411764706, 0.8823529411764706], CellLabel->"Out[16]="] }, Open ]], Cell["\<\ NNN=63, NNN=169, NNN=567 \:306e\:5834\:5408\:306f\:305d\:308c\:305e\:308c\ \:4ee5\:4e0b\:306e\:901a\:308a\:3002567 \:306e\:5834\:5408\:306f\:3001\:5b9f\ \:884c\:304c\:7d42\:4e86\:3059\:308b\:307e\:3067\:5c11\:3057\:6642\:9593\:304c\ \:304b\:304b\:308b\:3002\:5b9f\:884c\:4e2d\:306f\:3001\:4e00\:756a\:4e0a\:306b\ \:3010\:5b9f\:884c\:4e2d\:3011\:3068\:51fa\:3066\:3001\:30bb\:30eb\:306e\:53f3\ \:7aef\:304c\:9ec4\:8272\:306e\:30de\:30fc\:30af\:306b\:306a\:3063\:3066\:3044\ \:308b\:3002\ \>", "Text", CellChangeTimes->{{3.657329607632337*^9, 3.657329705634132*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"cum63", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"dt", ",", RowBox[{"Apply", "[", RowBox[{"Plus", ",", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"dist", "[", "63", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}], "<", "dt"}], "&"}]}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "1"}], "]"}], "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"dt", ",", RowBox[{"-", "0.3"}], ",", "0.3", ",", "0.001"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.429256674958592*^9, 3.429256683065659*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[17]:="], Cell[BoxData[ RowBox[{ RowBox[{"cum169", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"dt", ",", RowBox[{"Apply", "[", RowBox[{"Plus", ",", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"dist", "[", "169", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}], "<", "dt"}], "&"}]}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "1"}], "]"}], "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"dt", ",", RowBox[{"-", "0.3"}], ",", "0.3", ",", "0.001"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.429256685804077*^9, 3.429256694201247*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[18]:="], Cell[BoxData[ RowBox[{ RowBox[{"cum567", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"dt", ",", RowBox[{"Apply", "[", RowBox[{"Plus", ",", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"dist", "[", "567", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}], "<", "dt"}], "&"}]}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "1"}], "]"}], "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"dt", ",", RowBox[{"-", "0.3"}], ",", "0.3", ",", "0.001"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.429256697177925*^9, 3.4292567047946177`*^9}, { 3.4292579654060926`*^9, 3.429257970020411*^9}, {3.4292583947923527`*^9, 3.4292584017745733`*^9}, {3.429258849742208*^9, 3.42925885356103*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[19]:="], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"G63", "=", RowBox[{"ListPlot", "[", RowBox[{"cum63", ",", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"ImageSize", "\[Rule]", "450"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"RGBColor", "[", RowBox[{"0.2`", ",", "0.6`", ",", "0.8`"}], "]"}], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "}"}]}]}], "]"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[20]:="], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.2, 0.6, 0.8], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2ntwT2caB/CssSZjrQm11mZSk5qMRXXd161yaOtWVJDdVavYLDbNmsoa a7KZrHXJEpeSCll1TUgq7hFZFHUiG0oammLUXVxLkVDUnf39nu/r+53J7w/m M0nO75zzPu/zXp73tbjxg8fUCAkJeT/wT/D/dvY56n+666+Xa86qFz2rx6gr 5U3k8wM//s9H9eUOI3b2rVNDnjPuuydr7xyhLyQ32NT7gtzRLigHrza9SL6U u7QkMl/uXHhg0p6V8vzi+82Gzz/iR1wMP54wqVN04OZOP5osd7UblD+5leJ1 GCHb3Q2Qu9X+dnViNzmjUc3f131Dvt60TeiGCNmzB5YXvR184m/oG4N2NP73 Ddle32nZHrdUttvb+Y2/5PHIK+G7R0Tb5dbKn9pHrlqzv1/HWXLPbXefHUuS g29vQrwceNi4sKFyH2sQeYVdUL4XuNr1pvK7dWq8PrOhnBXe6mxULfnHQGsU 3y+n+6OB/a7Pp38wZ+rU6FV2g/LDIcEWlt8L3F3nQjknMdgi8uPJCbsnZsgx FjDyZ/bA8tNg88bJg4PNMUjOC76+HvLz4OO2kWMtAOV19gLL/X9ePTv2vVar okPsI2+IGDa66/mv6aEWsHIwmgqWy4HGCYSkPNwCWg61C8oW/uGyhdOjw7Q1 z0nZHneHPNo6hBxmN3jY75V7fkLbgXujAy83EPFyvHUYOdh7kxvIRaXZgRY9 RKO7y9Z9CmQLx09ka95E2V7fQNket5Vst1dXtsvdKqPL8PHPFf303rrB56KT rMPKUbWmBrqobOkiQbbu11e2cG4mW3iEylOsw39FtyxYHuhB8onDDwIRLqda QpBbWwPLZ+wGZeTbr/yOm8qqQtMeuvwqI5+W0sifMvKljPwoIx/KyH8y8p2M /HaQRj6Tkb9k5CsZ+emgnzU85f7Xf67vIR/Jyy3/yH0toGXklwM08omM/CEj X8jIDzLygYz+L6O/y9Z9q76k0d2+9Df6XTtMX9ncs+6xSbZw/li28BsnW7j0 k615X5etOWrL9vqu76fxuLLd3hrZLjdTHmsfORgs2T3lYG87G7Xfr0joH3oq u7uXYAlBDjxsIKD30Tb8FssWfdmyDQ9TZUu3o2RLf55s6aqxbOnlWQlt6eCs bN13t2zdbals3SO5xI+/Xlg4o0WsZ+E8TLbw6yxbuDSSWwSb98H/aGuOb2V7 fdtke9xFst3eRNkuN0TG/ErGfErG/KmYxnBa7B88F/tF3sWxHuZHMuZDMuY/ MuY7MuY3MuYzMuYve2mkFxnzExnzERnzD9m6R2/ZwrnpXr/4x6ORM/+Y5Fn4 1ZItXK4U0Whe2ZpjtTwQCZC2x42T7fZ6yHa5SPn5i+DHpzF+yxivZYzPMsbj PX6LsEfNfzk8zcP4K4e5C740xlcZ4+kXNMZPGeOljPFRxni4m8b4J2O8kzG+ yRjPdtEYv3b5hx71mnqnMtPDeCWn2QAgV1iH20l3svFHTscAQV+zDil3txf4 Ob3Yxg/5tnVYuY+ND3KWjQc76IfWoeUYNIi/dfzCdSOH53h5lt/lEMvn2+mh lr9l5GsZ+VlGPt5GI//KyLcy8quM7vtfGvlTRr6UkR8L/T9t/YV/85UtLh/K yH8y8p2M/LaVnma3J5+y/CW3tXwlz7b8VEBftHwkd7H8Iy9AQNPfW37ZQr9l +WSL36Aotmjsq7u8JZY/5B8sX8jvWn7Ip1dZB5EfW/+XByNh0rHWHTfTNa0/ ywiXTTT6q4zH2UijP8rofxto9LcN/sG/NO+d9WGJ61/rafQnGf1nHY3+IqN/ rKXRH2TEfx6NeJcR32voUItneYfF72d0vMWr3MjiM9e/dbDeha3tD3kHLB5z 6CSLP7mZxdtq+oTFl5xm8bSK7mTxI1+zeMmmF1t8yH0sHrLoh9b+cgwmxHS+ te8KOgwLNP/XeRF/GH/1qJdo7beMLscEg25tl1tCp2PCS9+297+YjsECjM63 95tJh2ECoe+397dQ32/vK0Pfb+9ngb4fCyx9vz1/ul959POqt6+c9LLseefR o+z55tKR9jyz6Qr7ujS6yO53Bj3F7i+V7m73M40OsQn0FP2+fV+Kfv6v4PWT ql1vYrW/T6z2+/F+l7TQ9fObVLifj6rmGNl9qv3cq/b3Mq5f7eeJtLu/ar+f pJ/j+ar9/RTavZ9q10v1Lm38efnoQZdevl8a10+ju6N9aHzfXP092ld/b9+f TmchPnQ9xA9dgfjS9RF/dCTis9r9ZtKjEN/ez9Je+yBtwFV3/4vpLPQPGs+z hK5A/6LxfMvoSPRPGs+7gh6F/q3vt+fPomOQH3Q/yB/0beQX3R/yj1eryfaS dpXXvHTkJxrvazXdGvmNxvvLocuRH2m8z1w6EfmVxvuVw5CfabxvOR/5ncb7 l2MwPnitwnPe3/erG6495NsYX2g3/tBufKLd+EW78Y124x/txkfajZ+0G19p N/7SmG9vpjGd3uw1fqXLuJADNz3s1+XT2P+TsZ8oY39Sxn7nFnoZ5h/0O5if 0Dcxf6EX4oHoNzH/oS9jfkTPxfyJbo/5lVeScWx6VEildwbzLzoV8zO6JeZv 9DHM7+gUzP/oKMwP6TLMH+mJmF/SEZh/0iWYn9LjMH+lG2B+S+/G/NcbU7Y5 9NVjld5ozI/pOpg/04WYX9PDMf+ma2J+Tm/A/J2ORcDQTzH/p3OwPqD7Y/1A 38P6gl6G9Qf9DtYn3j/qzcsoGFbl3cT6hV6I9Q39JtY/9GWsj+i5WD/R7bG+ os9g/UWnYn1Gt8T6jT6GBQCdgvUfHYX1IV2G9aN3N6Jpcsq6Km8i1pd0BNaf tFuf0m79Srv1Le3Wv7RbH9Nu/Uy79TXtlss0RvMiGv1dxn5+kTd/fnxp5vEq 1/9l1Atk5AMZ9QgZ+UFGvWMvjXwho54iI3/It7E/QiOfyIuxv0Ijv+z1Fm0f 2a73rSqvO/ZnaOQb+Rr2d2jkHzkdC0wa+UjuhP0lGvlJrsD+FI18Jadhf4tG /pJbY3/M63e43dXGD6tcPpNPYH+NRn6Tp2B/jka+k5thf49G/pPLsYFEIx/K SdhfpJEf5UjsT9LIl/u85Lx2HW4+rfIOYH+TRv6UE7E/SiOfyo2wv0ojv+6n i7A/SyPfyvHY36WRf+Uw7A/TyMfyDuwve3Nijv/90vOql/vPtNufpt3+Ne32 t2m3/027/XHa7Z/Tbn+ddvvvtNufp93+Pe3292m3/+99mLpgcPaLqpf1AdrV D2hXX6BR7zxIoz4q/4D6Bd0L9Q16CeofdCXqI/RbqJ/Qmaiv0N+j/kJHoz7j texbGn4p4AWo39BXUd+hu6D+Q8/DBi59EfUj+reoL9GzUX+iz6E+RbdF/Yqe gfoWfQr1L/o3qI/R01A/8zJbZNx9EPBx1NfoFqi/0ZNRn6OPoH5HN0V9j05G /Y8+jPog3QT1Q3oS6ot0KeqPdGPUJ+kJqF/S+1Hf9P52o9uDZwGHo/5Jf4T6 KF2M+indEPVVOgH1V3oP6rN0fdRv6bGo79I7Uf+l66LD0XGoH9PbUF+ma6P+ 7NVpGDfrRcAjUJ+mC1C/pmuhvk0PQ/2b3oT6OP0T1M/p9aiv079D/Z1+gfo8 vRb1e3oI6vv0M9T/6TU4H+Dl1T75XdCDcH6AfoLzBXQuzh/QA3E+gX6E8wv0 apxvoAegYEM/wPkIOhvnJ+h+OF9B38f5C3olzmfQfXF+wzudl/sk6Ls430Ev x/kPujfOh9B3cH6EXorzJXRPnD+h3fkU2p1fod35Ftqdf6Hd+RjanZ+h3fka r82YmBdBu/M3tDufQ7vzO7Q730O78z+0Ox9Eu/NDtDtfRLvzR7Q7n0S780u0 O99Eu/NPXv83rpnd+SjanZ+i3fkq2p2/ov8PxxXXAw== "]]}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->450, Method->{}, PlotRange->{{-0.3, 0.3}, {0, 0.9999999998266644}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.4292578261274652`*^9, 3.5223860862805862`*^9, 3.657329710055194*^9}, Background->RGBColor[ 0.9366445410849165, 0.9366445410849165, 0.9366445410849165], CellLabel->"Out[20]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"G169", "=", RowBox[{"ListPlot", "[", RowBox[{"cum169", ",", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"ImageSize", "\[Rule]", "450"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"RGBColor", "[", RowBox[{"0", ",", "0.4`", ",", "0.8`"}], "]"}], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "}"}]}]}], "]"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[21]:="], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0, 0.4, 0.8], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2nuYjmUeB3ArYbGaLWTLSjUxic2hNhVzI+VYjEnFZV0TsnNZl2ZdlGat hJyaNDE0y4wG41RybnLKM8Y4NqbJOcKIZGJ6p5BDDvu+v+/t+72uef/g+lzv zDPP89y/+3cffvf9/V/v+VrFChUq9A7/E/m/pX32Bq0vV6k24ETt2MntEn4o ekA+3v39j4beuTdY1XR2m7SFTWIf77e+c42K8ntDfvx9yS976BPJtZZ1PCE/ YReUI1cblyufXDA7v8EK+ck1O97Y9LH8Qd7FmL4f7AnemTwi/rb27WPDN3fk ymj5abtB+cPSUe7xfrLd3fNym2oH5ye1kafXrfRSzaZyScPmVZfWk5098J5g f8V+1e5e/FLsjGciT/wNfTZubf13z8r2+o7I9ri7ZLu99bJdbon8P/vIoUXb uj4x+ZvgiRpXrh959V+xz+acv75vpBx5e8MS5fDD9o96Re5kDSLPsQvKF8JX K2kod6lR8ZGJdeSsex49Gl35myAnNXgpt/6Y2N/CrZF3sYjuhgam59kNypfj Iy0svxC+uyfXyNlJkRaRr44evHH4dLmHBUxRsL1RWqWS0dNiF9oDy9cizdtf 7hlpjjh5ceT1tZNvRB63ufyiBaD8ib3AouCO6u2j/7M8O7aCfeSl9foMfPr4 1/QrFrByJJpWZcrhxgmHpNzXAlquaheULfzv+Tpo2+7o/p5Tc2ItnK4U0tY8 38r2uGvlgdYh5Ci7QTn8csMRLydah5EjvTe5VmEwIebl6inXtsfm7pobbtHd NLq7bN1nlWzh+KFszZsk2+vrLtvjPirb7dXcHaweMnH3/hOHYu1ypQV0AT70 SOuwcnTld8JdVLZ0MVi27tdZtnCOkS08qhYEM67uTL//0ZLYMdbhv6KbrMoM 9yD5UOGlcITL4y0hyM2sgeXv7AZl5FsZ+fWr4HSnBWc7FF/2+XQXjfwpI1/K yI8y8qGM/Ccj38nIbzuDU+kp/33hWhWHfCYjf8nIVzLyk4x8JGda/pE7W0DL yC87gkMPjyqYmFbHIZ/IyB8y8oWM/CAjH8jo/zL6u2zdN7Q9OHkp9Kf4vGiH 7iZb91gmWzi/L1v4DZEtXLrK1ryPyNYc1WR7fSXbgnlTn/ukXXYLh8eV7fYW yXa5ifIg+8iRYJn7rBzpbUej5cGWEOTww4YDemvQL6HK1YN92jobfvNki765 sg0P78iWbhNkS39OtnRVX7b0cj2ftnRwND/o0rv1P0qqdXPWfTfK1t1my9Y9 kmUL5z6yhd+TsoVLXblxpHkvbaGtOQ5uCZpkD31m9NsvO3t9ObI97gzZbm+4 bJeLlzG/kjGfkjF/yqMxnOYFL29vemmDG+AwP5IxH5Ix/5Ex35Exv5Exn5Ex f9lMI71sDvYtrXmbOzDUYX4iYz4iY/4hW/foKFs4N5Qt/CrLFi4/5NJo3tyg ztaPRr8WM9JZc8yXuyMB0va4/WW7vXayXa6BfONm5BPQGL9ljNdB8MdN8a0m jxvrMD7LGI830Rh/5Sh/wVvG+CpjPP2Sxvj5ZTCuc6W/NM1/z2G8lDE+yhgP N9IY/2SMdzLGNxnj2QYa49eGoG3X2/YUJ6Q5jFfyJBsA5GLrcOvpVjb+yKkY IOgz1iHltvYC19HpNn6sC1aeWxqd0SnTlVmHlTvZ+CBn2Xiwlr5sHVrugQah F1t+lytYPv+CfsXy9xfB5Bttzr05K9vnaxn5WUY+zqGRf2XkWxn5VUb3/ZxG /vw8uL1u8uYag5b6fCkjP66h0bwy8p+MfCcjv62mx9rtyYctf60Oah/qVeqa rnYtLF/JUyw/raK/t3wkP2X5R56GgKZ/svyykm5v+USeZfljZRD34IRKKf3X uV8tX8hdLD+soOdZB5GvWv+XeyJh0i9ad1xOV7L+LCNclgVHO/74a8+3cn1/ lfE4n9HojzL631Ia/U1G//qURn+S0X8+CVIf7JPb+Eq+7y8y+scSGv1BRvwv phHvMuJ7EV3V4llea/G7MPj3t1WDopa7XKLFq1zX4nMBvcPiMZseafEnx1i8 zacPWXzJkyye5tGtLH7mBRl/rd1l5Z+L3BmLl7l0usWH3MniIYu+bO0v98CE mF5h7TuHjsICjU6y9ssIRgyr3u7evntdESYYdDO73Cw6FRNeuszefzrdAwsw eoW935l0FCYQdJK9v7SgXYO7khPPHXBF9r6m083s/UyjU7HAosvs+VPpLHve qXSCPV8K3cCeZwpdbH9uUvBZh/mvD1p52OXa/U6gx9j9jafb2v2MpSvYBHqM ft7+3ih9/3bk+iPLXW94ud9PCop3duree+Yx//OJsn2fUM49ZP8p970r9/uu 3PXLfZ/kJo+Yu/ih9idu3R/t71/f4/n0PZ6f9u+n3PXG0/79uhnrdq4pbH7S X38S3RbtQ+PvpdC5aF/9vv39VDoL8aHrIX7oYsSXu5AY1/JAzR/8/aXRDRCf NO53Jp2A+KZx/+l0FvoHjeeZRRejf7nz6T1rN/36tH++DLoB+ieN551DJ6B/ 03j+LLoH8gON9zGXLkN+caX933xr0eAz/v3Mo1ORn2i8r/l0M+Q3Gu8vmy5C fqTxPhfQScivzm19+njikRL/fuUo5Gca71tegfxO4/3LPTA+0GgPuQzji3uo 0cJed9U/e2v8of34RPvxi/bjG+3HP9qPj7QfP2k/vrqYXo22rWt+7tb4S2O+ vZzGdFrGft0KGvt/MvYTZexPytjvXOmKo48Nzby71GVg/kF3wPyEPof5C52G B6JbY/5Dn8L8iE7B/Il+DPMrd71NxXH5e0rdd5h/0eMxP6ObYP5G78P8jh6F +R8djfkhXYD5Iz0c80v38PQ5l5L/+bOrh/knnY/5KT0E81e6Fua39EbMf+mB mB/TNTB/ptdgfu2i4m7OKjz8s+uL+TddCfNzeinm7/SLCBj6Gub/dDbWB3Q3 rB/oC1hfuOoHOjeq3SLkMrD+oDtgfUKfw/qFTsP6hm6N9Q99CusjOgXrJ/ox rK/cBxv2npwwLOS+w/qLHo/1Gd0E6zd6HxYA9Cis/+horA/pAqwf6eFYX7o2 b+dnnM8KuXpYf9J+fUr79Svt17e0X//Sfn1M+/Uz7dfXrvDdmo2nbw7dWn/T GM1zafR3Gfv5Mvq/jHqBjHwgox6R6+6rs/7e0MGQzw8y6h2baeQLGfUUGflD LsP+CI18Iqdjf8UdH/BqfvHpkM8vclvsz9DIN/IZ7O/QyD9yKhaYNPJRnrvj WMzuzLKQa4X9JRr5SS7G/hSNfCVPwv4WjfwlN8P+GI18tsVVOdchZfdvIXcI +2s08ps8BvtzNPKdHIP9PRr5Ty7CBhKNfJjvtqyd+fC8qyE3EvuLNPKj3AD7 kzTypbwD+5s08qechP1RGvl0qyvYkL//l2shVxf7qzTy6zY6F/uzNPKtnIj9 XRr5V47C/jCNfLzNVbl9/4Lnb4T7K/aXab//TPv9adrvX9N+f5v2+9+03x+n /f65uyvnzsJaN0O39tdpv/9O+/152u/f035/n/b7/7SvD9C+fuCqrth/ZFzY vr5Ao965k0Z9VP4V9Qv6OdQ36Fmof9A/oz5Ct0f9xL1XGtcwN+yZqK/QP6H+ QseiPkNPQ/2GPo36Dv0U6j/0VGzg0t+jfuTSLyRWLA7776gv0VNQf6KPoT5F t0D9ip6A+hZ9GPUv+m+oj9FjUT9zx1oOGFgW9gHU1+jGqL/Ro1Gfo/egfkc3 RH2PTkb9jy5EfZB+APVDd7pbv5mXw34D9UV6F+qPdH3UJ+lhqF/S21DfpO9B /ZMeivoonYf6qat36vbp18Kug/oqPRj1V3oT6rP0najf0oNQ36XXo/5L10SH o/ujfuxO5mwdcSPsHNSX6WqoP9P9UJ+mV6F+TVdGfZvug/o3vQz1cfoPqJ+7 yaXL42+G/Snq63Qv1N/pm6jP00tQv6fjUd+nr6P+Ty/C+QA6DucHXN/eBTkR /47zBfQCnD+gu+N8An0F5xfo+TjfQD+Pgg19Cecj6Lk4P+EW7tl5IuKuOF9B X8T5C/pjnM+gO+P8Bn0e5zvoTJz/oDvifIi72PHU+Yh/wfkRejbOl9DP4vwJ 7c+n0P78Cu3Pt9D+/Avtz8e41U26/B6xPz9D+/M1tD9/Q/vzObQ/v0P78z20 P/9D+/NB7r6zrW5E7M8P0f58Ee3PH9H+fBLtzy/R/nwT7c8/0f58lIt+o/fN iP35Kdqfr6L9+Sv6/71Xsqw= "]]}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->450, Method->{}, PlotRange->{{-0.3, 0.3}, {0, 0.9999999987882728}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.429257844962447*^9, 3.522386090571666*^9, 3.6573297159743767`*^9}, Background->RGBColor[ 0.9366445410849165, 0.9366445410849165, 0.9366445410849165], CellLabel->"Out[21]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"G567", "=", RowBox[{"ListPlot", "[", RowBox[{"cum567", ",", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"ImageSize", "\[Rule]", "450"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"RGBColor", "[", RowBox[{"0", ",", "0.2`", ",", "0.9`"}], "]"}], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "}"}]}]}], "]"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[22]:="], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0, 0.2, 0.9], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2nl0zdcWB/BUNbVUvVBVJYtUVU3R1DzU3XiGmodimUqaYqmqxtDQUBVj ElSQGBNipuahZk4QETEkYggqiKHG5MZMSPLu3d+Tvddr/mjXZ6X95fc7Z599 hn0+Cfi568BCHh4evVz/cP+7Nv+cNUsWZmRO7VbFEdbM/3ZKRfW1TjPnDyup rttvb5tihdTTh955ve5RqjGBz/tv9K7jyAgutal1hro+P1DtftqkOPXNVYvj fbaoG+5IDDq4NNWUyzu5KTukqWPW4WdV+s5Su17u71fj1Y35BdWzM8dR3X6p JqzNo6u+d9s6+O06qJsUTVsR2EQ9t0zhHsV91fcqf1lkg3eq+bN+pKNxQncH 8Qero/7r/uIz4gdddpef8kDNzfe3mj836YxJ75UYX+f37xz8envV/Lh16oX8 o3auSWhXP+yMGbq8b9USD390tNz5JPfcGLW79UYMVrs+NsCrp/pr7pAzZuCS UmNiKgQ5lvAD1U9dT7tXWd22WKHq00qrY8t+kV7JU/3c1RuHn6WY2pfne3ww OMTRHh0sXs4vqH75jbuH1R1db9dwR4rxeL10Q4na0x0rA909os4ZP2T/qLnq zhww6tX8wSnm+y7d9vcvG+V44+7eAHVXd3d0Ua91N18zdZ77c79Ud+MATDHv hvc+9W3zWMef3IBqD/5Rb/DuPaDxtWRxTw7YZOO7K+Tz4Iy1Dnc0bYtRuzrH FZLqvhzQ6iL8wGTTaXd26X13tjk4/MuqOZxenRZz91xS8+fuVg/gAXHaZJ4c 7Hgxbb/Di19Q7WpcV8SrB/OAUbtHb3Cp0+Z49aiE0d8ddcQlLXP16Ckxhrua h882NYfj7FMmb+qxcp5nkx3cvYFqbr5Oav7cL9T8esXV/LjMkyat59xPlk9J c5zEj3gMD1h1Jc8Q1xBVc7oYctJ0M8EejVtkOHj4tVFzOFdRc3gUUU/gAX/C 1KrRfrqX7z1HjW0xrhGkvnj6hSvC1ZM5Iaj9uIPVV/gFT5j8C+m3NzZ6bPOt GvlVjXyaJEb+TDJvDb87ybNBjs2XauRHNfKhGvkvyYx44x1eaW8hQr5TI78d FyOfqZG/1MhXx82PzsvNq84pSshPauQjdQznH3UbDujjpkLKvpxCe0oS8kui GPlEjfyhRr5INJHvPDj2Qd2yhPygRj5QY/yrMd7VPHydx0zMVY/ab+pXJAw3 NQ+PTWoO55lqDr+hx8yyQU1Of1i1KnG4tFNz91ZXc3cUVXPz3UswW5+sfvNP sy8Jn6vm11uj5sdNUw/iH7U7WJa1TDCFfV49y5tUn9yjLb2SeggnBLXrY10B fVTM0+/ho6b4V3M3jD9HxNG3TM3TQ4ia062/mtMfHTWOiUXm1x7UkjhdlVdz esmNF3M6SFfz8N2v5uG2ON6ca3S+Z6Oo9sTDI1jN4dxbzeHXUM3hUibeRLVv 0T/qeVeq5u7eF0fE3B1pam6+nWr+3KgjZt7SBQ2q5fckfr1Ran7cN2qsr9RY T6mxfjps0tqP+uz5t/6E6VSN9ZEa6yE11j+HTUBK5IyS7QYS1jtqrG/UWM+o sX45ZGqm1LmwZMqPhPSixvpEjfWIGusPNQ+P1ofMRxuH905aP5w4nCurOfw8 1Rwut+PE6N44U6V/sV83Tw8i7o4V6k5IgGL+3AA1v16zOHM/uuyJoMhxxI/z Ueflu3+MGPO3GvO1GvOzMWn56d+vzQ8hzMcHxZh/1V72gQXG/HrQ/Na8QoPf p04lzKcHxJg/1Zgv1ZgfD5hPF8at83h7BmE+3C/G/KfGfKfG/KbGfLbPHBm9 sOrqjrMJ85ca85U6lCcA9XUecHtNlwlFP4ttGkUNeP5RR2CCEN/lAaluyg24 x6RWePJtWedCWsDzhzqbB6z6a54f1LE8H+wWv+QBvdv4DWsU3HrkUuqMDhGv 5fyu9uB8vkvck/P3LpO+reV/kp4st/lajfysRj7eKUb+3WladRo2f9n21Tbf qpFf1Ri+f4mRP9XIl3+ZftFPO73yXG/z4w4xuleN/KdGvtthltbrmjz59Wab 37aLJ/LrqS9z/lLX4ny13fTZXnF8i+RtFM75aZv4BucjdSPOP+o5CGjxfc4v W83LB5NyKO8vas75RL2I84f6MecLdVvOD1tMUIU7vn0i9tByHiDqHB7/6q5I mOJuPBw3mwELL/wwIvwAFebxrEa4bBJjvKrxORvFGI8bjfm9TdNaL+Ps+Nsg xnhTY3ytF2M8rTczi+wYGRhwxI6fP8UYL2qMj3VijId1ZuxHCSa6cIKN/7Vi xLsa8b1GXITjWb2b43e1mb3iynsxVxNpMMerugzH5ypxIsfjSvEYjr+VZmXF jhcmOU9QFY63FeKLHF/qUI6n5eIGHD/LzUCfVism102muxwvy8QLOD7UX3M8 xIpfcv+rO2NBbOolX3v7RY8ztIX7d4nYCxs0cSD3X7Q4BQsME/rb0heR1c6S Hz9ukTgCC15xNrf/AnFnbMDMgNndmwZ8cJ62cPvOE3thASEO5PaLFKdwe80V +3H7zDGXGiZm7C+eRhHYYImz+fsjxLH8vX+I/fn7Zpjzsx3OlR9fIh/+nnDx df5zoeI4ft+p4gn8fpNN7yLDDx73+5ua8vtMFHvwAnqCeAL/vXH6+9/dzx+j v+fnjTKzjs88s7Bzuv3/A9X83w/+1+/9/+XOJiaq1Otuv1wjD/sjxu/p/+2v xvNpZ+qkEhGnrhf8fbF9P/093l9/j+/71/8/gfald/R4/1pGQfuIbfuJbfuK 8fxQWtUq/t0GmTeoKfpHjL83QxyH/hXj70dQoRbfT2z4/CbFIj7EeJ854uuI LzHeL1Lsg/ikB22nenZ/ecu+7zyxP+JbjPdfII7F+KA58VdLP350237PIvF1 jC8xvi9a7IPxSb7lykWvyPjHfu8SsT/GtxjfHyvujPwgRnssI8/oFlm+CXco G/lFjPZZLo5AfhKjvVZQ5ftDWk5fcpf8kN/EaL+V4hTkRzHacxXduT5vbNYP 9ygQ+VWM9lV7IT+L0d7qLcjvdHnPZu/4z+/b9ld3xvwgRn+oszG/UAt6nLo1 7X7B/CO285PYzl9iO79RTY8bHSN/fVAw/4nt/Ci286fYzq9iO//S7sbD0sa+ /9CutzeLsZxW47xuixjnf1so47fEPWvmPiScJ6pxPqnGeedWcTTWHxRRPT5t QrFMaoH1ifgh1i/iSHyQ+Cusf8S3sD6izOMB8+eOyaQZWD+J62B9Jb6C9Zd4 MtZnFPBzaFDYxUyqgfWb+BzWd+JxWP+JK2F9SFVGvjWpom8WncT6UTwK60ux N9af4nisT8VDsX6l0kuDH9UcnUWlsL4V78f6VzwA62NxMayfyat1gGfYriza gfW1uC/W3+LCWJ+LN2D9Tquajw/+jzOLuiFgxG+w/hevxP5A3B77B/FT7C+o 2i2PsbHlnRSN/Ye4BfYn4ofYv4gjsb+h1Ss39f6wtZO+wv5HfAv7I/EM7J/E dbC/ohehx/IdPzjpCvZf4snYn4lrYP8mPocNgHgc9n8UPKB3iZtTnFQJ+0Px SewfxaOwvxR7Y//pasfEq3tinAX7U7Hdv4rt/lZs97/ULCLp2dCtzoL9sdju n8V2fy2222UxZvM4WvRJnx7zDjnteFfjPF+N8a9GvSCOktuF+cWddtp8oEY9 Qo38oEa945AY+eIQTSnfofTAS05CPUWN/KHOxvmIGPnkEIX5XA3PznDSApyv iJFf1E1xPiNGvjlM796OuGTuOukuznfEyD/qCGwwxchH6gY4X6Kb762t8GmW 0+Yn9XWcT4mRr9ShON+iiD5zgvo9dtr8pfbD+ZgY+Ux9EedrVKNJaM31z5w2 v6kn4HxOjHynroLzPTHyXzzFD6xarOFLJ6XgAEmMfKgeg/NFMfJjPGXWGzH+ ixwn+eB8Uox8qU7E+aYY+fMoNd+aE7/ptZMCcT4qRj5Vl8H5qhj5NUEch/NZ 6jDsrMeZN06bb9WDcb4rRv5Ve+F8mMYk/1Rjfa7T5mP1bpwvi+35s9ieT1PP nw697JDnLDi/FtvzbbE9/xbb83GxPT+nWRc7zkpw2Z6vi+35u9iez4vt+T35 B+9pWCHfWXC+L7bn/2JbHxDb+gGVHz0+u7/Ltr4gRr3zuBj1UfVj1C/ErVDf oFu+F1L/cHkR6h/iLNRHxM1RPxHPQ32FIot5h29x+T7qL2IH6jPiOajfiP9B fYeySjdYnOhyI9R/xH/gAFd8A/UjcT3Ul8ThqD9RyNiQtZdcvor6lLgW6lfi qahviS+j/kV0YOTq2y7XRH1MPBH1M/EF1NfE1VB/o3V3/N/Jcnk86nPiVNTv xJVR3xMHo/4nPo36IAV8VDL1icsVUT8UB6G+KE5C/VFcHvVJqlSoaPILl0eg filOQH1TXBb1T/Ew1EepV59r03JcPoz6qbg06qviIai/ig+iPisuifotFc+9 1/+Ny4NQ3xXvRf1XXBwDThyA+jGFRbaOyXV5J+rL4qKoP4v7oT4t3ob6NY3o Xmx4nsueqG+Le6P+Ld6E+rj4LdTPxetRX6eoHm1z3e6O+rs4H/V58TrU78Xf oL5PY7cG9cp3ORf1f/Ea3A8Qd8H9AfFr3C+gGZlRUW6vwv0DcSfcTxC/wv0F 8QrcbxB3QMGGLpQJ2e/2C9yPEC/D/QlxO9yvED/D/QtaGB5y3u2luJ8hboP7 G+InuN8hjsH9Dzr6dPhtt1vjfoj4Ee6PiBfjfom4Je6fiO39FLr9yzSn2/b+ itjebxHb+y9iez+G4mpeeea2vT8jtvdrxPb+jdjez6G0u6deuW3v74jt/R6x vf8jtveDxPb+EDkqO964be8Xie39I7G9nyS295co6eMDuW7b+01ie/9JbO9H ie39KQqrvzrPbXu/SmzvX4n/B0Ga0E8= "]]}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->450, Method->{}, PlotRange->{{-0.3, 0.3}, {0, 0.9999999974840971}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.429257849428543*^9, 3.5223860939339523`*^9, 3.6573297196243362`*^9}, Background->RGBColor[ 0.9321278706034943, 0.9321278706034943, 0.9321278706034943], CellLabel->"Out[22]="] }, Open ]], Cell["\<\ \:3053\:308c\:3089\:5168\:3066\:3092\:4e00\:5ea6\:306b\:307e\:3068\:3081\:3066\ \:63cf\:304f\:3068,\:6b21\:306e\:901a\:308a\:3002\:ff08\:63cf\:3044\:305f\ \:5f8c\:3067\:ff0c\:62e1\:5927\:3057\:305f\:3002)\:3000 \:95a2\:6570(\:30b0\:30e9\:30d5)\:306e\[CloseCurlyDoubleQuote]\:5217\ \[CloseCurlyDoubleQuote]\:304c\:ff0c\:3042\:308b\:95a2\:6570(\:30b0\:30e9\ \:30d5)\:3078\:8fd1\:3065\:3044\:3066\:3044\:304f\:3068\:3044\:3046\:611f\ \:3058\:304c\:3064\:304b\:3081\:308b\:3067\:3057\:3087\:3046\:304b\:3002\ \>", "Text", CellChangeTimes->{{3.429258075617962*^9, 3.429258122304632*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"G7", ",", "G21", ",", "G63", ",", "G169", ",", "G567"}], "]"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[23]:="], Cell[BoxData[ GraphicsBox[{{{}, {{}, {}, {RGBColor[0.2, 0.6, 0.8], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2nts1eUdx3HGCCGEkMYQQwghnWlIo2yg80K97IATuekolxlGGGsaRggh 7sR0hhDCEDutDLUCOsbNXrgqw9ohImO0dqwiMNYpUaYw0XkBlVEvDFGRnfN9 P34+ye/8AXml7e/8ntv3uXyf71X/asove/bo0eNnhX+K//8wPq+29Uifh0ZX vdd1hf3WpId/f/dl9nWz9ozv19P+3fwPvtr2ySvy2wsH7Bj7tn1DPNAuPu3+ dvs/m9buL22xK3YeuHffk/ajHefKZz5qF17uzQuL7ZviBe3HzizKXTfLjre7 076l7+vN+VvslQN73dX/+/bpoVf32T7YzkWB7cd/XCzxP+WPJu8e8tuP7Ki+ N+0o7kE7Xm+PHY/bZv8hPvbZLZ0Tb3jIHrPrs4tHF9jF2rtnrl0obHXJdHtc NIi9IR5of1542umh9oR+Pa968HK7YdDwE2W97f8VWqPjXJd8Bw0sN8UL2l9M Lbaw/ZPC21XstDfmiy1if7l43t6alXZldBh7cxTY/rrYvNX2lGJzTLa3Fqtv tP1NsbhX29OiA9pPRQXafOztg2fMvumtf8jTo8Paxd7Uut4uNE6hS9ozo0Pb feKBdnT/QXZ0pwtH5Gief9lR3N327BgQdkm8oF2o3EKPt+fGgLGLo3fhALv9 YGOhRf8uM9ztGD6tdnTHx+xo3rwd1TfJjuIOt+P1+tvxuDOH5cN85AUxYO2y 3vcVhqgd4WKeHcNvvB3dudyO7tHHXhID/pA8rHV9YQTZx46cL/RwuzYCgj0i Gtg+Hi9oE29t4qtNPD2YiZ828dImPtrEQ5v4ZxPvbOLby5l4ZhO/bOKVTXyy iUf2+og/9vjo0Dbx5UAmntjED5t4YRMfbOKBzfi3Ge92DN+zL8kMNzuGxw47 uvPDdnS/+XZ0l4l2NO9VdjRHXzuq73SnTHHteL0tdjzuQXtOfOxiZ2kcYxdH 24kye14EBLtQ2EKH/psc02+HHb2v0Y7p4T47wm2VHeEvZ0e4GmJHeLm4X45w cMKO4bvXjuG21o7hsdCO7jzDju5XYUd3GWhfWWze83+Vozlet6P6dtlR3Mft eL0aOx431WZ9ZbOeslk/dchMpzbrI5v1kM36x2a9Y7O+6Whr7nzhF/nNv86x nrFZv7woE15s1ic26xGb9Ycdw2OsHd15qB3dr7cd3eW9dpnmtaM5mu1JBEA5 ilttx+uNtuNxpfY3l4qfNpn522a+tpmfbebjfTLzr12SHvitmV9t5tO/yMyf NvOlzfxoMx/ulZn/bOY7m/nNZj77s8z8ZTNf2XUxAdgnY8DtkUfG/GPXM0G0 9RxePqHi1S25UzEg7VFRgS/Iq2P+sLtjwNrjYn6wG2I+2C1/EQParqRB5K0R 3+0eEc+fl6dH/LaJ1zbx2SYe75KJvzbx1ia+2gzf52Tip028tImPO2Wa1yb+ 2cQ7m/j2J3lpvJ79RsQv+5qIV/ayiE+t8jsRj+wbI/7YK+jQ8ocRX56Vb414 Yq+J+GF/GvHCnhDxoUVuigFifxnjv6VtzqEL7w9d/1JuCgFTnhbD8Rm5V4xn m+6yQ2a82hTnjzLj0Wb8bZcZbzbj62mZ8WQzfp6SGS8242ObzHiw6f9bZfq7 Tf/eIveJ/mzvjv672eWP/moPjP65yeWP/rjR5Y/+Z5dHf2t2+aN/2XXRn5pc /ug/9qnoL40uf/QPe1z0hwaXP9rfrmRBLLdE+26QS9igyflov3VyFwsMeUQ8 bo1cz4K3raXfsbrvXn881x31v1quZAMmt0T9PiGXsICQ81F/q+SuqK+V8oio nxVyPRssf3+Uv15uiPI+IldF+ZbLpVGeZfLJ+Lo6uT3e9wF5SbxfrTwq3mep zAJ6iX8/vm+Rf/6b4vMXZJ5Xk/n7fOb352Z+XpVxpZ0+mZ/nMn+fyzw/8/N8 LvN+md9fkMuUL/P3S3KZ+sk8rzaXqd/M8+v897RP5vuW55oqBo08lPsg1077 ynx/vdxA/5B5nxXySfqXzPutkkvpn/4++q9cRf/298f7r/b3Mz78/Ywffz/j y9/P+PP3Mz4z5d3g72d8Z8rfIFcSHzL10Sh3E18y9dMk1xOfMvXVLI8gvmXq b6PcRXzM1OcmOU98zdSvXUJ8ztS33UJ8z9S/Xcn8kGkPu5v5RU7zj5zmp1xt 3cTK+39+5tv5S07zm5zmPznNj3KaP+U0v8pp/pVZbz8js5y2Oa9rkTn/szlP tDmftDnvfFZex/pDvo31ifwx6xd5FQWSb2b9I7/L+khezvpJvpb1lXyc9Zdc y/pMHsb6TT7K+k5exPpPLmN9KB9m/SjXsL6UB7P+lPezPpXns36VB7C+lfey /pVnsz6W+7F+lneyvpZnsv7O3Z6vfu2u5rO5XqzP5e2s3+VpdBj5a9b/8kb2 B/Id7B/kz9lfyOvYf8i3sT+RP2b/Iq9ifyPfzP5Hfpf9kbyc/ZN8Lfsr+Tj7 L7mW/Zk8jP2bfJQNgLyI/Z9cxv5QPsz+Ua5hfykPZv8pp/2pnPavctrfymn/ K6f9sZz2z3LaX8tpuywzm7e7vdm/y5zn24x/m3yBTTywyUe05+IY4NLZFB9s 8h0vysQLm3yKTfywuzkfkYkn9mrOV2Tiiz2K8xmZeGOf4nxHJv7Y9WwwZeKR PZLzJZn4ZJ/kfEomXtl1nG/JxC97BOdjMvHMPsb5mkx8s5dwPicT7+xyzvdk 4p/dxQGSTDy0F3C+KBMf7VLOJ2XipX2A802Z+GnnOR+Viaf2QM5XZeJrp9zO +axMvLXncr4rE3/tEs6HZeKxvZvzZTmdP8vpfFpO59dyOt+W0/m3nM7H5XR+ LqfzdTmdv8vpfF5O5/dyOt+X0/m/nPIDcsofyCm/IJPvfFkmP2p/Sv5Cvp38 hryG/If8X/Ij8q3kT+QnyK/IH5J/kX9EfkZeQf5Gfp/8jnwj+R/5EQ5w5XfI H8nXk1+Sl5F/kv9Nfkq+hvyV/AD5LfkN8l/yD8iPyUvJn8mvkV+TryT/Ji8m Pye/Qv5OHkp+T15I/k8+Qn5QvoL8oXwv+UX5IPlHeQj5Sfke8pdyJ/lNeRD5 T/lu8qNyB/lT+XLyq/I88q/yPvKz8mXkb+U55HflPeR/5f4MOLma/LG8i/yy 3Jf8szyL/LTcSv5a7k1+W55B/lveQX5c/k7M513y0+TX5Z+Sf5cvkZ+Xt5G/ l6eS35cvkv+Xt3A/QJ7M/QH5K+4XyJu4fyBP4n6CfIH7C3Iz9xvkO0nYyOe5 HyE3cn9Cnsj9Cvkc9y/kJ7mfIY/n/ob8Gfc75PXc/5DHcj9E/oT7I/Ja7pfI Y7h/Iqf7KXK6vyKn+y1yuv8ip/sxcro/I6f7NXK6fyOn+zlyur8jp/s9crr/ I6f7QXK6PySn+0Vyun8kp/tJcrq/JKf7TXK6/ySn+1Fyuj8lp/tVcrp/Jf8f +Q+sYg== "]]}}, {}}, {{}, {{}, {}, {RGBColor[0.2, 0.8, 0.4], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2n1QlVUeB3DWHHJch5jGdRzHjFpyXNOi0k2zfLQyJXPBl1p1HJdh2JZx nLrbMA3DOi4qFZkVKbqoYCAIkmTAukiucS8sa0guketslppkb75kYGi+6z7P 73v8fqd7/9D5DPDcc55zzu+8/M4d6c/P+mOfmJiYef4/wf8P2Oe/4Rj3eXVy 2jedd8pHU17/23O3ymMX7koe0Ed+bfF3l6vP7Ke/zBm4feqX8oP2QDl42oqI /NWWja0JtfL4HW0vNr0tv9lybsSCN2W/cIcuLpUnWAHlt04v8cYulK10M+RH +n9aHnpEXjO47zNxo+UTw+/rVzNU9qzC8trHghp/Qp+a2TjspVOyvb5DslW3 Xbbi7ZLtcdXyevvI3VV7pj/4qjyloffqgWw5eHsvZMp+ZdPj58rTrEHkTfZA +az/tBPD5ScH9Ln7lUFy6ZB7jyTGyj/5rdFyrpN+Cg1Mb7YCyhdmBy0s/84v 3fgdckUoaBH50tJFu7PWyKnWYeRKq7B8JWjedHlW0Bwz5a3B65ssXwuqe588 xzqg/I69QBkfuWbo/IwJRz+m51qH/Th8LWFbXcknyyYGvam+RPYbx++S8gLr 0HI/e6Bs3X+IbN3pYgdtzfOZbNVtlDNsQMjxVkDZf7l+j5czbcDIwejNGShH 2sv8Fv0PjeEu2/Cpl607viVb84Zke30pslX3XtmKFyfb407vC39Q/fvC3uc/ mrgPHzrbBqycGLvMH6KyhYtFsg2/ZNm68wjZukc/OdcG/Ef0qPoSfwTJBzvO +z1czrOAICdZA8uHrYAy4q2M+CojnrbTiJ8y4qWM+CgjHsqIfzLinYz4tjd8 U2VP3foJfT3EMxnxS0a8khGfZMQjucTij5xsHVpGfGmjEU9kxA8Z8UJGfJAR D2SMfxnjXbbh2/0hjeEm2/DYLlt3fl227rdYtu4yXbbmvfvD8F2H5lVX3PyA Z83RX7bXd2IPjerKVrwq2R73ivysfeSgs5RNkYPRdiRRXmQBQfYr63fof9M2 /bbI1vvKZJselskWbtNkC3+ebOFqmGzh5WorbeHgiGzDd7dsw22jbMMjR7bu PF+27je+NbyiOXFGR+U8z7rLYHlk0Lzn/0Vbc3wq2+trkK26a2UrXpZsj5st Y30lYz0lY/3UQmM6lbE+krEekrH+kbHekbG+kbGekbF+aaYRXmSsT2SsR2Ss P5rD9TcdnTLsTzmeDY+psnXn4bJ1v1jZuss3ERrNK1tzlMspCIC0VTddtuJN lu1xCfK168EnTGP+ljFfy5ifZczHTTTmXznePfCGMb/KmE8/oDF/ypgvZcyP MubD3eGELy41Nq1f62H+kzHfyZjfZMxn/6Qxf8mYr+R8mwDkLhtwu+hxNv/I BZgg6OM2IOVJ9gLfp4ts/pB7bMDK02x+kEttPmikL9iAllPRIPRWi+9yjMXz nfRci98y4rWM+LwzfDKS8ef6r2pcPG6gEX9lxFsZ8VXG8P0HjfgpI17KiI87 aDSvjPgnI97JiG9/p5db8eTPLX7J91u8kldafKqnj1k8kh+y+COvRoemT1p8 qaMftXgib7D4URf+VWXc3uQ7It6PFi/kJy0+1NKbbYDIl2z8y7MQMOk5Nhzf o/vaeJbRXbbTGK8yqvMujfEoY/zV0BhvMsbXNhrjScb4eYfGeJExPqppjAcZ /X8rjf4uo39X0f2sP1eFt0yLW7GzuMNrtP5bSWdaf5UHW//cQrdZf6ygs63/ ySOsv5XTB61/yfnWnzbT46z/yMetv5TRRdY/5GnWH0rpC9b+cioWxHStte8m Oh4bNDpk7VdMd2KBQSfZ4zbQBVjw0j32/ov0/diAhePHDPzlbYM+82rt/a6j 47GAoEP2/grpTntfa+gkez+r6QJssOgeq38BXWr1fYNOs/qtohOsPivpLvu6 fDpi5X2ZzrXy5dGTrDzLaWyYc/X79n1L9PO/Bs/PjnpeVtTfh6J+PzPq52lR TpVvnBMU/fr6bQOO3fi593OnyXh+1M9DtCtf1O9n6+eoX9Tf59Lu/UQ9L492 7zfq+fn6e7RP1Pet0t+jfaO+v4AuRf+IKs9qugv9K6p8hXQC+mdUedd5t/Ru Gtk69jsvDf2bRvmL6FKMDxr12UB3YXzRqF8xnYDxSaO+m/T9GN/6fqt/KZ2K +KDyIH7QPYgvKh/iD12A+KTyIn7RSYhvKj/iH92J+Kj6IH7SIcRX1Q/xl45H fPZuX3EgpXzCKfe+5VrEdxrvX07F/ECjPeQezC+0m39oNz/Rbv6i3fxGu/mP dvMj7eZP2s2vtJt/aay336OxnJZxXldL4/xPxnmijPNJGeeddd7oiob22P2n vWKsP+jHsT6hv8f6hS5EheiHsf6hv8b6iF6F9RM9Busr+jDWX3Qe1mf0KKzf 6ANY39FLsP6jE7E+pPdh/UhnYX1JD8X6k27F+pRejPUrPRDrW3o31r90BtbH 9ACsn73ypLazvaO7vR1YX9MLsP6m+2J9Ttdg/U7PQYehr2D9T1dgf0A/hf0D fRb7C7oY+w/6cexP6O+xf6ELsb+hH8b+h/4a+yN6FfZP9Bjsr+jD2H/Redif 0aOwf6MPYANAL8H+zzs/6/3yjki3l4j9Ib0P+0c6C/tLeij2n7Tbn9Ju/0q7 /S3t9r+02x/Tbv9Mu/017bbLNGbzCI3xLuM8X8b4l5EvkBEPZOQjZMQHGfmO ZhrxQkY+pdn7y4U/jF98ptvFD7kH5yM04olchPMVGvFFnoTzGRrxRj6O8x0a 8UcuwAaTRjySx+F8iUZ8krtwPkUjXsn5ON+iEb/kJJyP0Yhn8kGcr9GIb3Iu zue8itza36y92u3inTwC53s04p/ciQMkGvFQzsb5Io34KCfgfJJGvJTbcL5J I37KIZyP0oin8mCcr9KIr3voCM5nacRbORPnuzTirxyP82Ea8VhuxPky7c6f vc7L1RlN17tvnE/T7vyadufbtDv/pt35OO3Oz2l3vk6783fanc/T7vyeduf7 tDv/p11+gHb5A9rlF2jkO/fSyI/KPyJ/QT+B/Aa9AfkP+gfkR+hHkT/x6get r77iex3yK/RJ5F/oicjP0KuRv6G/RX6Hfgj5H/oNHODSx5A/on+L/BK9Evkn +gvkp+j7kb+iX0Z+i/4c+S/6HuTH6OXIn9H/Q36NHon8G70U+Tl6P/J39HDk 9+gc5P/oDuQHvV/YPNLj3Yn8If0i8ot0O/KP9DDkJ+kXkL+k9yC/SQ9B/pN+ DvlRugX5U3oQ8qv0IuRf6SbkZ+lbkb+ln0V+l96F/C8dhwFHpyN/TDcgv0z3 R/6ZXoj8NF2P/DUdi/w2PR/5b3o78uM0/u+ktyG/Tj+N/Dt9Hfl5uhr5e3o2 8vv0VeT/6SrcD6Bn4v4AfRn3C+gtuH9Ap+B+An0R9xfoctxvoGcgYUOfx/0I ugz3J+jpuF9Bn8P9C/pt3M+gk3F/g+7F/Q66BPc/6Km4H0Kfwf0ReiPul9BT cP+EdvdTaHd/hXb3W2h3/4V292Nod3+GdvdraHf/hnb3c2h3f4d293tod/+H dveDaHd/iHb3i2h3/4h295Nod3+JdvebaHf/iXb3o2h3f4p296tod/+K/j8u VepS "]]}}, {}}, {{}, {{}, {}, {RGBColor[0.2, 0.6, 0.8], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2ntwT2caB/CssSZjrQm11mZSk5qMRXXd161yaOtWVJDdVavYLDbNmsoa a7KZrHXJEpeSCll1TUgq7hFZFHUiG0oammLUXVxLkVDUnf39nu/r+53J7w/m M0nO75zzPu/zXp73tbjxg8fUCAkJeT/wT/D/dvY56n+666+Xa86qFz2rx6gr 5U3k8wM//s9H9eUOI3b2rVNDnjPuuydr7xyhLyQ32NT7gtzRLigHrza9SL6U u7QkMl/uXHhg0p6V8vzi+82Gzz/iR1wMP54wqVN04OZOP5osd7UblD+5leJ1 GCHb3Q2Qu9X+dnViNzmjUc3f131Dvt60TeiGCNmzB5YXvR184m/oG4N2NP73 Ddle32nZHrdUttvb+Y2/5PHIK+G7R0Tb5dbKn9pHrlqzv1/HWXLPbXefHUuS g29vQrwceNi4sKFyH2sQeYVdUL4XuNr1pvK7dWq8PrOhnBXe6mxULfnHQGsU 3y+n+6OB/a7Pp38wZ+rU6FV2g/LDIcEWlt8L3F3nQjknMdgi8uPJCbsnZsgx FjDyZ/bA8tNg88bJg4PNMUjOC76+HvLz4OO2kWMtAOV19gLL/X9ePTv2vVar okPsI2+IGDa66/mv6aEWsHIwmgqWy4HGCYSkPNwCWg61C8oW/uGyhdOjw7Q1 z0nZHneHPNo6hBxmN3jY75V7fkLbgXujAy83EPFyvHUYOdh7kxvIRaXZgRY9 RKO7y9Z9CmQLx09ka95E2V7fQNket5Vst1dXtsvdKqPL8PHPFf303rrB56KT rMPKUbWmBrqobOkiQbbu11e2cG4mW3iEylOsw39FtyxYHuhB8onDDwIRLqda QpBbWwPLZ+wGZeTbr/yOm8qqQtMeuvwqI5+W0sifMvKljPwoIx/KyH8y8p2M /HaQRj6Tkb9k5CsZ+emgnzU85f7Xf67vIR/Jyy3/yH0toGXklwM08omM/CEj X8jIDzLygYz+L6O/y9Z9q76k0d2+9Df6XTtMX9ncs+6xSbZw/li28BsnW7j0 k615X5etOWrL9vqu76fxuLLd3hrZLjdTHmsfORgs2T3lYG87G7Xfr0joH3oq u7uXYAlBDjxsIKD30Tb8FssWfdmyDQ9TZUu3o2RLf55s6aqxbOnlWQlt6eCs bN13t2zdbals3SO5xI+/Xlg4o0WsZ+E8TLbw6yxbuDSSWwSb98H/aGuOb2V7 fdtke9xFst3eRNkuN0TG/ErGfErG/KmYxnBa7B88F/tF3sWxHuZHMuZDMuY/ MuY7MuY3MuYzMuYve2mkFxnzExnzERnzD9m6R2/ZwrnpXr/4x6ORM/+Y5Fn4 1ZItXK4U0Whe2ZpjtTwQCZC2x42T7fZ6yHa5SPn5i+DHpzF+yxivZYzPMsbj PX6LsEfNfzk8zcP4K4e5C740xlcZ4+kXNMZPGeOljPFRxni4m8b4J2O8kzG+ yRjPdtEYv3b5hx71mnqnMtPDeCWn2QAgV1iH20l3svFHTscAQV+zDil3txf4 Ob3Yxg/5tnVYuY+ND3KWjQc76IfWoeUYNIi/dfzCdSOH53h5lt/lEMvn2+mh lr9l5GsZ+VlGPt5GI//KyLcy8quM7vtfGvlTRr6UkR8L/T9t/YV/85UtLh/K yH8y8p2M/LaVnma3J5+y/CW3tXwlz7b8VEBftHwkd7H8Iy9AQNPfW37ZQr9l +WSL36Aotmjsq7u8JZY/5B8sX8jvWn7Ip1dZB5EfW/+XByNh0rHWHTfTNa0/ ywiXTTT6q4zH2UijP8rofxto9LcN/sG/NO+d9WGJ61/rafQnGf1nHY3+IqN/ rKXRH2TEfx6NeJcR32voUItneYfF72d0vMWr3MjiM9e/dbDeha3tD3kHLB5z 6CSLP7mZxdtq+oTFl5xm8bSK7mTxI1+zeMmmF1t8yH0sHrLoh9b+cgwmxHS+ te8KOgwLNP/XeRF/GH/1qJdo7beMLscEg25tl1tCp2PCS9+297+YjsECjM63 95tJh2ECoe+397dQ32/vK0Pfb+9ngb4fCyx9vz1/ul959POqt6+c9LLseefR o+z55tKR9jyz6Qr7ujS6yO53Bj3F7i+V7m73M40OsQn0FP2+fV+Kfv6v4PWT ql1vYrW/T6z2+/F+l7TQ9fObVLifj6rmGNl9qv3cq/b3Mq5f7eeJtLu/ar+f pJ/j+ar9/RTavZ9q10v1Lm38efnoQZdevl8a10+ju6N9aHzfXP092ld/b9+f TmchPnQ9xA9dgfjS9RF/dCTis9r9ZtKjEN/ez9Je+yBtwFV3/4vpLPQPGs+z hK5A/6LxfMvoSPRPGs+7gh6F/q3vt+fPomOQH3Q/yB/0beQX3R/yj1eryfaS dpXXvHTkJxrvazXdGvmNxvvLocuRH2m8z1w6EfmVxvuVw5CfabxvOR/5ncb7 l2MwPnitwnPe3/erG6495NsYX2g3/tBufKLd+EW78Y124x/txkfajZ+0G19p N/7SmG9vpjGd3uw1fqXLuJADNz3s1+XT2P+TsZ8oY39Sxn7nFnoZ5h/0O5if 0Dcxf6EX4oHoNzH/oS9jfkTPxfyJbo/5lVeScWx6VEildwbzLzoV8zO6JeZv 9DHM7+gUzP/oKMwP6TLMH+mJmF/SEZh/0iWYn9LjMH+lG2B+S+/G/NcbU7Y5 9NVjld5ozI/pOpg/04WYX9PDMf+ma2J+Tm/A/J2ORcDQTzH/p3OwPqD7Y/1A 38P6gl6G9Qf9DtYn3j/qzcsoGFbl3cT6hV6I9Q39JtY/9GWsj+i5WD/R7bG+ os9g/UWnYn1Gt8T6jT6GBQCdgvUfHYX1IV2G9aN3N6Jpcsq6Km8i1pd0BNaf tFuf0m79Srv1Le3Wv7RbH9Nu/Uy79TXtlss0RvMiGv1dxn5+kTd/fnxp5vEq 1/9l1Atk5AMZ9QgZ+UFGvWMvjXwho54iI3/It7E/QiOfyIuxv0Ijv+z1Fm0f 2a73rSqvO/ZnaOQb+Rr2d2jkHzkdC0wa+UjuhP0lGvlJrsD+FI18Jadhf4tG /pJbY3/M63e43dXGD6tcPpNPYH+NRn6Tp2B/jka+k5thf49G/pPLsYFEIx/K SdhfpJEf5UjsT9LIl/u85Lx2HW4+rfIOYH+TRv6UE7E/SiOfyo2wv0ojv+6n i7A/SyPfyvHY36WRf+Uw7A/TyMfyDuwve3Nijv/90vOql/vPtNufpt3+Ne32 t2m3/027/XHa7Z/Tbn+ddvvvtNufp93+Pe3292m3/+99mLpgcPaLqpf1AdrV D2hXX6BR7zxIoz4q/4D6Bd0L9Q16CeofdCXqI/RbqJ/Qmaiv0N+j/kJHoz7j texbGn4p4AWo39BXUd+hu6D+Q8/DBi59EfUj+reoL9GzUX+iz6E+RbdF/Yqe gfoWfQr1L/o3qI/R01A/8zJbZNx9EPBx1NfoFqi/0ZNRn6OPoH5HN0V9j05G /Y8+jPog3QT1Q3oS6ot0KeqPdGPUJ+kJqF/S+1Hf9P52o9uDZwGHo/5Jf4T6 KF2M+indEPVVOgH1V3oP6rN0fdRv6bGo79I7Uf+l66LD0XGoH9PbUF+ma6P+ 7NVpGDfrRcAjUJ+mC1C/pmuhvk0PQ/2b3oT6OP0T1M/p9aiv079D/Z1+gfo8 vRb1e3oI6vv0M9T/6TU4H+Dl1T75XdCDcH6AfoLzBXQuzh/QA3E+gX6E8wv0 apxvoAegYEM/wPkIOhvnJ+h+OF9B38f5C3olzmfQfXF+wzudl/sk6Ls430Ev x/kPujfOh9B3cH6EXorzJXRPnD+h3fkU2p1fod35Ftqdf6Hd+RjanZ+h3fka r82YmBdBu/M3tDufQ7vzO7Q730O78z+0Ox9Eu/NDtDtfRLvzR7Q7n0S780u0 O99Eu/NPXv83rpnd+SjanZ+i3fkq2p2/ov8PxxXXAw== "]]}}, {}}, {{}, {{}, {}, {RGBColor[0, 0.4, 0.8], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2nuYjmUeB3ArYbGaLWTLSjUxic2hNhVzI+VYjEnFZV0TsnNZl2ZdlGat hJyaNDE0y4wG41RybnLKM8Y4NqbJOcKIZGJ6p5BDDvu+v+/t+72uef/g+lzv zDPP89y/+3cffvf9/V/v+VrFChUq9A7/E/m/pX32Bq0vV6k24ETt2MntEn4o ekA+3v39j4beuTdY1XR2m7SFTWIf77e+c42K8ntDfvx9yS976BPJtZZ1PCE/ YReUI1cblyufXDA7v8EK+ck1O97Y9LH8Qd7FmL4f7AnemTwi/rb27WPDN3fk ymj5abtB+cPSUe7xfrLd3fNym2oH5ye1kafXrfRSzaZyScPmVZfWk5098J5g f8V+1e5e/FLsjGciT/wNfTZubf13z8r2+o7I9ri7ZLu99bJdbon8P/vIoUXb uj4x+ZvgiRpXrh959V+xz+acv75vpBx5e8MS5fDD9o96Re5kDSLPsQvKF8JX K2kod6lR8ZGJdeSsex49Gl35myAnNXgpt/6Y2N/CrZF3sYjuhgam59kNypfj Iy0svxC+uyfXyNlJkRaRr44evHH4dLmHBUxRsL1RWqWS0dNiF9oDy9cizdtf 7hlpjjh5ceT1tZNvRB63ufyiBaD8ib3AouCO6u2j/7M8O7aCfeSl9foMfPr4 1/QrFrByJJpWZcrhxgmHpNzXAlquaheULfzv+Tpo2+7o/p5Tc2ItnK4U0tY8 38r2uGvlgdYh5Ci7QTn8csMRLydah5EjvTe5VmEwIebl6inXtsfm7pobbtHd NLq7bN1nlWzh+KFszZsk2+vrLtvjPirb7dXcHaweMnH3/hOHYu1ypQV0AT70 SOuwcnTld8JdVLZ0MVi27tdZtnCOkS08qhYEM67uTL//0ZLYMdbhv6KbrMoM 9yD5UOGlcITL4y0hyM2sgeXv7AZl5FsZ+fWr4HSnBWc7FF/2+XQXjfwpI1/K yI8y8qGM/Ccj38nIbzuDU+kp/33hWhWHfCYjf8nIVzLyk4x8JGda/pE7W0DL yC87gkMPjyqYmFbHIZ/IyB8y8oWM/CAjH8jo/zL6u2zdN7Q9OHkp9Kf4vGiH 7iZb91gmWzi/L1v4DZEtXLrK1ryPyNYc1WR7fSXbgnlTn/ukXXYLh8eV7fYW yXa5ifIg+8iRYJn7rBzpbUej5cGWEOTww4YDemvQL6HK1YN92jobfvNki765 sg0P78iWbhNkS39OtnRVX7b0cj2ftnRwND/o0rv1P0qqdXPWfTfK1t1my9Y9 kmUL5z6yhd+TsoVLXblxpHkvbaGtOQ5uCZpkD31m9NsvO3t9ObI97gzZbm+4 bJeLlzG/kjGfkjF/yqMxnOYFL29vemmDG+AwP5IxH5Ix/5Ex35Exv5Exn5Ex f9lMI71sDvYtrXmbOzDUYX4iYz4iY/4hW/foKFs4N5Qt/CrLFi4/5NJo3tyg ztaPRr8WM9JZc8yXuyMB0va4/WW7vXayXa6BfONm5BPQGL9ljNdB8MdN8a0m jxvrMD7LGI830Rh/5Sh/wVvG+CpjPP2Sxvj5ZTCuc6W/NM1/z2G8lDE+yhgP N9IY/2SMdzLGNxnj2QYa49eGoG3X2/YUJ6Q5jFfyJBsA5GLrcOvpVjb+yKkY IOgz1iHltvYC19HpNn6sC1aeWxqd0SnTlVmHlTvZ+CBn2Xiwlr5sHVrugQah F1t+lytYPv+CfsXy9xfB5Bttzr05K9vnaxn5WUY+zqGRf2XkWxn5VUb3/ZxG /vw8uL1u8uYag5b6fCkjP66h0bwy8p+MfCcjv62mx9rtyYctf60Oah/qVeqa rnYtLF/JUyw/raK/t3wkP2X5R56GgKZ/svyykm5v+USeZfljZRD34IRKKf3X uV8tX8hdLD+soOdZB5GvWv+XeyJh0i9ad1xOV7L+LCNclgVHO/74a8+3cn1/ lfE4n9HojzL631Ia/U1G//qURn+S0X8+CVIf7JPb+Eq+7y8y+scSGv1BRvwv phHvMuJ7EV3V4llea/G7MPj3t1WDopa7XKLFq1zX4nMBvcPiMZseafEnx1i8 zacPWXzJkyye5tGtLH7mBRl/rd1l5Z+L3BmLl7l0usWH3MniIYu+bO0v98CE mF5h7TuHjsICjU6y9ssIRgyr3u7evntdESYYdDO73Cw6FRNeuszefzrdAwsw eoW935l0FCYQdJK9v7SgXYO7khPPHXBF9r6m083s/UyjU7HAosvs+VPpLHve qXSCPV8K3cCeZwpdbH9uUvBZh/mvD1p52OXa/U6gx9j9jafb2v2MpSvYBHqM ft7+3ih9/3bk+iPLXW94ud9PCop3duree+Yx//OJsn2fUM49ZP8p970r9/uu 3PXLfZ/kJo+Yu/ih9idu3R/t71/f4/n0PZ6f9u+n3PXG0/79uhnrdq4pbH7S X38S3RbtQ+PvpdC5aF/9vv39VDoL8aHrIX7oYsSXu5AY1/JAzR/8/aXRDRCf NO53Jp2A+KZx/+l0FvoHjeeZRRejf7nz6T1rN/36tH++DLoB+ieN551DJ6B/ 03j+LLoH8gON9zGXLkN+caX933xr0eAz/v3Mo1ORn2i8r/l0M+Q3Gu8vmy5C fqTxPhfQScivzm19+njikRL/fuUo5Gca71tegfxO4/3LPTA+0GgPuQzji3uo 0cJed9U/e2v8of34RPvxi/bjG+3HP9qPj7QfP2k/vrqYXo22rWt+7tb4S2O+ vZzGdFrGft0KGvt/MvYTZexPytjvXOmKo48Nzby71GVg/kF3wPyEPof5C52G B6JbY/5Dn8L8iE7B/Il+DPMrd71NxXH5e0rdd5h/0eMxP6ObYP5G78P8jh6F +R8djfkhXYD5Iz0c80v38PQ5l5L/+bOrh/knnY/5KT0E81e6Fua39EbMf+mB mB/TNTB/ptdgfu2i4m7OKjz8s+uL+TddCfNzeinm7/SLCBj6Gub/dDbWB3Q3 rB/oC1hfuOoHOjeq3SLkMrD+oDtgfUKfw/qFTsP6hm6N9Q99CusjOgXrJ/ox rK/cBxv2npwwLOS+w/qLHo/1Gd0E6zd6HxYA9Cis/+horA/pAqwf6eFYX7o2 b+dnnM8KuXpYf9J+fUr79Svt17e0X//Sfn1M+/Uz7dfXrvDdmo2nbw7dWn/T GM1zafR3Gfv5Mvq/jHqBjHwgox6R6+6rs/7e0MGQzw8y6h2baeQLGfUUGflD LsP+CI18Iqdjf8UdH/BqfvHpkM8vclvsz9DIN/IZ7O/QyD9yKhaYNPJRnrvj WMzuzLKQa4X9JRr5SS7G/hSNfCVPwv4WjfwlN8P+GI18tsVVOdchZfdvIXcI +2s08ps8BvtzNPKdHIP9PRr5Ty7CBhKNfJjvtqyd+fC8qyE3EvuLNPKj3AD7 kzTypbwD+5s08qechP1RGvl0qyvYkL//l2shVxf7qzTy6zY6F/uzNPKtnIj9 XRr5V47C/jCNfLzNVbl9/4Lnb4T7K/aXab//TPv9adrvX9N+f5v2+9+03x+n /f65uyvnzsJaN0O39tdpv/9O+/152u/f035/n/b7/7SvD9C+fuCqrth/ZFzY vr5Ao965k0Z9VP4V9Qv6OdQ36Fmof9A/oz5Ct0f9xL1XGtcwN+yZqK/QP6H+ QseiPkNPQ/2GPo36Dv0U6j/0VGzg0t+jfuTSLyRWLA7776gv0VNQf6KPoT5F t0D9ip6A+hZ9GPUv+m+oj9FjUT9zx1oOGFgW9gHU1+jGqL/Ro1Gfo/egfkc3 RH2PTkb9jy5EfZB+APVDd7pbv5mXw34D9UV6F+qPdH3UJ+lhqF/S21DfpO9B /ZMeivoonYf6qat36vbp18Kug/oqPRj1V3oT6rP0najf0oNQ36XXo/5L10SH o/ujfuxO5mwdcSPsHNSX6WqoP9P9UJ+mV6F+TVdGfZvug/o3vQz1cfoPqJ+7 yaXL42+G/Snq63Qv1N/pm6jP00tQv6fjUd+nr6P+Ty/C+QA6DucHXN/eBTkR /47zBfQCnD+gu+N8An0F5xfo+TjfQD+Pgg19Cecj6Lk4P+EW7tl5IuKuOF9B X8T5C/pjnM+gO+P8Bn0e5zvoTJz/oDvifIi72PHU+Yh/wfkRejbOl9DP4vwJ 7c+n0P78Cu3Pt9D+/Avtz8e41U26/B6xPz9D+/M1tD9/Q/vzObQ/v0P78z20 P/9D+/NB7r6zrW5E7M8P0f58Ee3PH9H+fBLtzy/R/nwT7c8/0f58lIt+o/fN iP35Kdqfr6L9+Sv6/71Xsqw= "]]}}, {}}, {{}, {{}, {}, {RGBColor[0, 0.2, 0.9], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2nl0zdcWB/BUNbVUvVBVJYtUVU3R1DzU3XiGmodimUqaYqmqxtDQUBVj ElSQGBNipuahZk4QETEkYggqiKHG5MZMSPLu3d+Tvddr/mjXZ6X95fc7Z599 hn0+Cfi568BCHh4evVz/cP+7Nv+cNUsWZmRO7VbFEdbM/3ZKRfW1TjPnDyup rttvb5tihdTTh955ve5RqjGBz/tv9K7jyAgutal1hro+P1DtftqkOPXNVYvj fbaoG+5IDDq4NNWUyzu5KTukqWPW4WdV+s5Su17u71fj1Y35BdWzM8dR3X6p JqzNo6u+d9s6+O06qJsUTVsR2EQ9t0zhHsV91fcqf1lkg3eq+bN+pKNxQncH 8Qero/7r/uIz4gdddpef8kDNzfe3mj836YxJ75UYX+f37xz8envV/Lh16oX8 o3auSWhXP+yMGbq8b9USD390tNz5JPfcGLW79UYMVrs+NsCrp/pr7pAzZuCS UmNiKgQ5lvAD1U9dT7tXWd22WKHq00qrY8t+kV7JU/3c1RuHn6WY2pfne3ww OMTRHh0sXs4vqH75jbuH1R1db9dwR4rxeL10Q4na0x0rA909os4ZP2T/qLnq zhww6tX8wSnm+y7d9vcvG+V44+7eAHVXd3d0Ua91N18zdZ77c79Ud+MATDHv hvc+9W3zWMef3IBqD/5Rb/DuPaDxtWRxTw7YZOO7K+Tz4Iy1Dnc0bYtRuzrH FZLqvhzQ6iL8wGTTaXd26X13tjk4/MuqOZxenRZz91xS8+fuVg/gAXHaZJ4c 7Hgxbb/Di19Q7WpcV8SrB/OAUbtHb3Cp0+Z49aiE0d8ddcQlLXP16Ckxhrua h882NYfj7FMmb+qxcp5nkx3cvYFqbr5Oav7cL9T8esXV/LjMkyat59xPlk9J c5zEj3gMD1h1Jc8Q1xBVc7oYctJ0M8EejVtkOHj4tVFzOFdRc3gUUU/gAX/C 1KrRfrqX7z1HjW0xrhGkvnj6hSvC1ZM5Iaj9uIPVV/gFT5j8C+m3NzZ6bPOt GvlVjXyaJEb+TDJvDb87ybNBjs2XauRHNfKhGvkvyYx44x1eaW8hQr5TI78d FyOfqZG/1MhXx82PzsvNq84pSshPauQjdQznH3UbDujjpkLKvpxCe0oS8kui GPlEjfyhRr5INJHvPDj2Qd2yhPygRj5QY/yrMd7VPHydx0zMVY/ab+pXJAw3 NQ+PTWoO55lqDr+hx8yyQU1Of1i1KnG4tFNz91ZXc3cUVXPz3UswW5+sfvNP sy8Jn6vm11uj5sdNUw/iH7U7WJa1TDCFfV49y5tUn9yjLb2SeggnBLXrY10B fVTM0+/ho6b4V3M3jD9HxNG3TM3TQ4ia062/mtMfHTWOiUXm1x7UkjhdlVdz esmNF3M6SFfz8N2v5uG2ON6ca3S+Z6Oo9sTDI1jN4dxbzeHXUM3hUibeRLVv 0T/qeVeq5u7eF0fE3B1pam6+nWr+3KgjZt7SBQ2q5fckfr1Ran7cN2qsr9RY T6mxfjps0tqP+uz5t/6E6VSN9ZEa6yE11j+HTUBK5IyS7QYS1jtqrG/UWM+o sX45ZGqm1LmwZMqPhPSixvpEjfWIGusPNQ+P1ofMRxuH905aP5w4nCurOfw8 1Rwut+PE6N44U6V/sV83Tw8i7o4V6k5IgGL+3AA1v16zOHM/uuyJoMhxxI/z Ueflu3+MGPO3GvO1GvOzMWn56d+vzQ8hzMcHxZh/1V72gQXG/HrQ/Na8QoPf p04lzKcHxJg/1Zgv1ZgfD5hPF8at83h7BmE+3C/G/KfGfKfG/KbGfLbPHBm9 sOrqjrMJ85ca85U6lCcA9XUecHtNlwlFP4ttGkUNeP5RR2CCEN/lAaluyg24 x6RWePJtWedCWsDzhzqbB6z6a54f1LE8H+wWv+QBvdv4DWsU3HrkUuqMDhGv 5fyu9uB8vkvck/P3LpO+reV/kp4st/lajfysRj7eKUb+3WladRo2f9n21Tbf qpFf1Ri+f4mRP9XIl3+ZftFPO73yXG/z4w4xuleN/KdGvtthltbrmjz59Wab 37aLJ/LrqS9z/lLX4ny13fTZXnF8i+RtFM75aZv4BucjdSPOP+o5CGjxfc4v W83LB5NyKO8vas75RL2I84f6MecLdVvOD1tMUIU7vn0i9tByHiDqHB7/6q5I mOJuPBw3mwELL/wwIvwAFebxrEa4bBJjvKrxORvFGI8bjfm9TdNaL+Ps+Nsg xnhTY3ytF2M8rTczi+wYGRhwxI6fP8UYL2qMj3VijId1ZuxHCSa6cIKN/7Vi xLsa8b1GXITjWb2b43e1mb3iynsxVxNpMMerugzH5ypxIsfjSvEYjr+VZmXF jhcmOU9QFY63FeKLHF/qUI6n5eIGHD/LzUCfVism102muxwvy8QLOD7UX3M8 xIpfcv+rO2NBbOolX3v7RY8ztIX7d4nYCxs0cSD3X7Q4BQsME/rb0heR1c6S Hz9ukTgCC15xNrf/AnFnbMDMgNndmwZ8cJ62cPvOE3thASEO5PaLFKdwe80V +3H7zDGXGiZm7C+eRhHYYImz+fsjxLH8vX+I/fn7Zpjzsx3OlR9fIh/+nnDx df5zoeI4ft+p4gn8fpNN7yLDDx73+5ua8vtMFHvwAnqCeAL/vXH6+9/dzx+j v+fnjTKzjs88s7Bzuv3/A9X83w/+1+/9/+XOJiaq1Otuv1wjD/sjxu/p/+2v xvNpZ+qkEhGnrhf8fbF9P/093l9/j+/71/8/gfald/R4/1pGQfuIbfuJbfuK 8fxQWtUq/t0GmTeoKfpHjL83QxyH/hXj70dQoRbfT2z4/CbFIj7EeJ854uuI LzHeL1Lsg/ikB22nenZ/ecu+7zyxP+JbjPdfII7F+KA58VdLP350237PIvF1 jC8xvi9a7IPxSb7lykWvyPjHfu8SsT/GtxjfHyvujPwgRnssI8/oFlm+CXco G/lFjPZZLo5AfhKjvVZQ5ftDWk5fcpf8kN/EaL+V4hTkRzHacxXduT5vbNYP 9ygQ+VWM9lV7IT+L0d7qLcjvdHnPZu/4z+/b9ld3xvwgRn+oszG/UAt6nLo1 7X7B/CO285PYzl9iO79RTY8bHSN/fVAw/4nt/Ci286fYzq9iO//S7sbD0sa+ /9CutzeLsZxW47xuixjnf1so47fEPWvmPiScJ6pxPqnGeedWcTTWHxRRPT5t QrFMaoH1ifgh1i/iSHyQ+Cusf8S3sD6izOMB8+eOyaQZWD+J62B9Jb6C9Zd4 MtZnFPBzaFDYxUyqgfWb+BzWd+JxWP+JK2F9SFVGvjWpom8WncT6UTwK60ux N9af4nisT8VDsX6l0kuDH9UcnUWlsL4V78f6VzwA62NxMayfyat1gGfYriza gfW1uC/W3+LCWJ+LN2D9Tquajw/+jzOLuiFgxG+w/hevxP5A3B77B/FT7C+o 2i2PsbHlnRSN/Ye4BfYn4ofYv4gjsb+h1Ss39f6wtZO+wv5HfAv7I/EM7J/E dbC/ohehx/IdPzjpCvZf4snYn4lrYP8mPocNgHgc9n8UPKB3iZtTnFQJ+0Px SewfxaOwvxR7Y//pasfEq3tinAX7U7Hdv4rt/lZs97/ULCLp2dCtzoL9sdju n8V2fy2222UxZvM4WvRJnx7zDjnteFfjPF+N8a9GvSCOktuF+cWddtp8oEY9 Qo38oEa945AY+eIQTSnfofTAS05CPUWN/KHOxvmIGPnkEIX5XA3PznDSApyv iJFf1E1xPiNGvjlM796OuGTuOukuznfEyD/qCGwwxchH6gY4X6Kb762t8GmW 0+Yn9XWcT4mRr9ShON+iiD5zgvo9dtr8pfbD+ZgY+Ux9EedrVKNJaM31z5w2 v6kn4HxOjHynroLzPTHyXzzFD6xarOFLJ6XgAEmMfKgeg/NFMfJjPGXWGzH+ ixwn+eB8Uox8qU7E+aYY+fMoNd+aE7/ptZMCcT4qRj5Vl8H5qhj5NUEch/NZ 6jDsrMeZN06bb9WDcb4rRv5Ve+F8mMYk/1Rjfa7T5mP1bpwvi+35s9ieT1PP nw697JDnLDi/FtvzbbE9/xbb83GxPT+nWRc7zkpw2Z6vi+35u9iez4vt+T35 B+9pWCHfWXC+L7bn/2JbHxDb+gGVHz0+u7/Ltr4gRr3zuBj1UfVj1C/ErVDf oFu+F1L/cHkR6h/iLNRHxM1RPxHPQ32FIot5h29x+T7qL2IH6jPiOajfiP9B fYeySjdYnOhyI9R/xH/gAFd8A/UjcT3Ul8ThqD9RyNiQtZdcvor6lLgW6lfi qahviS+j/kV0YOTq2y7XRH1MPBH1M/EF1NfE1VB/o3V3/N/Jcnk86nPiVNTv xJVR3xMHo/4nPo36IAV8VDL1icsVUT8UB6G+KE5C/VFcHvVJqlSoaPILl0eg filOQH1TXBb1T/Ew1EepV59r03JcPoz6qbg06qviIai/ig+iPisuifotFc+9 1/+Ny4NQ3xXvRf1XXBwDThyA+jGFRbaOyXV5J+rL4qKoP4v7oT4t3ob6NY3o Xmx4nsueqG+Le6P+Ld6E+rj4LdTPxetRX6eoHm1z3e6O+rs4H/V58TrU78Xf oL5PY7cG9cp3ORf1f/Ea3A8Qd8H9AfFr3C+gGZlRUW6vwv0DcSfcTxC/wv0F 8QrcbxB3QMGGLpQJ2e/2C9yPEC/D/QlxO9yvED/D/QtaGB5y3u2luJ8hboP7 G+InuN8hjsH9Dzr6dPhtt1vjfoj4Ee6PiBfjfom4Je6fiO39FLr9yzSn2/b+ itjebxHb+y9iez+G4mpeeea2vT8jtvdrxPb+jdjez6G0u6deuW3v74jt/R6x vf8jtveDxPb+EDkqO964be8Xie39I7G9nyS295co6eMDuW7b+01ie/9JbO9H ie39KQqrvzrPbXu/SmzvX4n/B0Ga0E8= "]]}}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->450, Method->{}, PlotRange->{{-0.3, 0.3}, {0, 0.9999999999999999}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.4292578543254633`*^9, 3.522386100017233*^9, 3.6573297261756983`*^9}, Background->RGBColor[ 0.9321278706034943, 0.9321278706034943, 0.9321278706034943], CellLabel->"Out[23]="] }, Open ]], Cell["\:53ce\:675f\:5148\:3067\:3042\:308b\:6b63\:898f\:5206\:5e03\:3082\:63cf\ \:3044\:3066\:304a\:3053\:3046\:3002", "Text", CellChangeTimes->{3.429256744797798*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sigmQ", "=", RowBox[{ RowBox[{"Sqrt", "[", RowBox[{"p", RowBox[{"(", RowBox[{"1", "-", "p"}], ")"}], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Log", "[", "u", "]"}], "-", RowBox[{"Log", "[", "d", "]"}]}], ")"}], "^", "2"}]}], " ", "]"}], "/.", "pud"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[24]:="], Cell[BoxData["0.05149713723295456`"], "Output", CellChangeTimes->{3.429257861811329*^9, 3.522386113779859*^9, 3.6573297412551537`*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[24]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myuQ", " ", "=", " ", RowBox[{ RowBox[{"Log", "[", "rm", "]"}], "-", RowBox[{ RowBox[{"sigmQ", "^", "2"}], "/", "2"}]}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[25]:="], Cell[BoxData["0.0018417935699216906`"], "Output", CellChangeTimes->{3.42925786408184*^9, 3.522386116719145*^9, 3.657329743663135*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[25]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"CDF", "[", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"myuQ", ",", "sigmQ"}], "]"}], ",", "x"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "0.3"}], ",", "0.3"}], "}"}], ",", RowBox[{"ImageSize", "\[Rule]", "450"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[26]:="], Cell[BoxData[ GraphicsBox[{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwt23k8VN//B3ASZStFJW1CEooQQvcdKVlCoRLZkr3skdBCSEpFFNklZN/X jm0MZswmISpFdkbCJ0v53fk+fn/N4/k4r/s+Z84998w9f8x+O/cL19exsbHt 5GBjY33uMueXVFTsQoVP6TszqsQxMhSfl5PvQu9Nmvm8JCWwQEmzIJnDXSho eSYpJk4C+/r7zUfxg10o9bJWzlrQASz1qWyI0K4u5Hx+/M2gy0HM2JdWICDc hWpPo53ZUwcxdkufz3zbutC2PKMf0p5SmN2huqOcm7uQfPjOmsQHhzCJFv3B hXVdyEngsQm5TQb7mMvknVtjoEq6kvAmO1ns4fMYlZlVBrK48vjFw3+y2IhV /9ORRQb6xaFXd1nzCJa95HKiZ4KB8tpStmj4y2OycpEJVQwGyjqp8CrkgSI2 sO1IaxmVgeJ8ZPn3TCtiT1bpv4rIDMQsenV1ylwJm2nfqZvTykAeTGvtK2rH sCL7nP9e1zBQaCIxF+1QwWz0z4nHVTKQYawKm8lLFWyLwi/DF2UMdMtz6HnQ NlXMa001K7KAgYTcTxZ37jmOKSW0md5JZ6CIXWOuX4zUseF7bvf8UhiI/YHy rbwhdeylo0Ce9xsG2t+9ohIaoIEtKl3mcItjICvt4tnHxSewKuposWUkAz0/ 9qjJWvwkpsG5YTPmxUD3K9+dc990CjsblmC4dJOB2opF0rSCTmEmG448LXNl IO6g2w7hM6cwF24zfpnrDKS9I2cqoVcbe8WfwSt8mYHWEVT3eJLPYJlPlfW7 TBmorC7VysxYByvc3BH59DwDva73pu3p0cFat/zi5tRnoIt8FbYJ02ex39tg 49wJBlI852q26aQ+9i+OoZOvxkDXt6jwfx3Qx3iEHcKdVBhI4wX9h3CQASYq 8oTrmzwD1T89v1Wk7RxmuLd/PVmcgY4T/SMVTxtjuZJ+7FncDLT7qhJTwdkE q3jHo2nLxUByR+fuVfSYYI1Syfd2czBQskbgYOJZU6xXmrD2YpWOjrY370BH zTAuOcF/d5l0dMwz5XK/2CVsa1HWCfUpOuJT54/99vYStueoWtDiGB2dYKek lchcxpQUbVfdftCRyPF3nOwnzTFblcJl82466mrLjZmLssDcqrTUtjHoSOCU 78Z9UpaY//FPt2kUOgop1Fx+3WqJPVX/++dMGx15jW+51MhvhdWB/n+KtXS0 NWtbr/M1G0z47Ohv/jS8vxcUwfiAa5jog/IstmS8v+fH+/q+XcMO1oWY/06g oxpjF3ERHXtMWV4U9cbSkaiB5M6aXdcxE2HzyIwIOpL7nXnp+VcH7MqFgyfi HtIRj2DFYK+pI2YXtcCMeEBHH7NtzTw6HTEPthdmNwPp6LPIzd5aghP2dKxD 9LgHHVkSFrN5PrpgcWKvu2Ru0BGxxvDlNitXLMnSMWyvCx0pLEhEUydcsTwa xxSHPR39ZLx3CuW7gbVXaVRSLtHRNbN6QWcvd2z9o4Jz9kBHx9WlNMxcvDC+ 5kC2Sxp0JLNrve3uNi9M8K9eqe5xOirvc5MoPuiNiXmOCssp0hH6+WXw+pQ3 Buaiw0uSdGT0wtJgIcoXOxMzEzcljufpe+7sX/bFDDvrdL+J0pHrbKeQvfMt zFLTvLBFhI5uVDQLmBr6YQGHXgREb6IjpZyxlr8Kt7EH12wOP+Clo78/cquW i29jj5KODPpspKOKd6bdtooB2KstpNNX1tFR4CWj1cQTd7CKJY4tBxZpqD48 1oPbMwj71e77ruYLDU1SSqOvyd3HhDbW5td9pqFOzYXbdiH3MdUzbGUfemgo zq24cLr3PhbcFNnQRKch5hxVkRDxAOOpTenrINDQvm1O37VXQ7DDS8PfyE00 NL9vPNHzaihmrCI9QkE0tKdZ+pRDQygWV1o2x6imoQkqNYH4+CEmltfO259P Q9zJcwsmx8Ox0xObtn7JpaF798+VZueEY05SpsLf3tHQcHhAOPfuCKwg86vE UBoNSYGdsdCGR5ha0u8Tky9paB2PlKT5f5HYhad7PFaCaMhc0bn3rm405ku2 u/U3gIaGxCnUE9+isVc82YFrfjS0DN46PerPsK9hCo84vGhobfM3ebfeZ5jL XZ10Xgca+p4oqflR7AX2pD4qm/8aDV0NLtSWuf0CK1qhF2y2oSFxsS/Gm+gv sEU/y1rBKzQ0bi/SH/MwBnvg4flxlyENRTNa/e3WvcTeFlR83qNPQ041To1f r7/E2qZWBvedpaHN/KrNoqSX2CbnsGlxLRpy5t8rtC0xDkuwTeSSVaYhhxYC Z+r5V1jJBYKqxl4asqRuPVQt+gaTl1m+8FeEhvreptOaC99gBRxyNz7soKGa eJvbkZpJWG7Zq7STW2jofRvl3N0byVj6djee0+tp6PGWg7sxn1RMlJkqwcVO Q6bHthveIKZiGtHvg56uUFFS8+i6o7vTMMVfwSMvZqiocx9bSExHGiZWfqAq 8SMVXZjd9DdBPQPb6xA9tYdCRSKU5Een3mRgIjuWRFOJVPx5ixZD/zKwrbfJ jzJrqChsydXyfHsmxn7C2yI/lYqkBTiu9fhmYYMtDf8+uFGRe5V7bLxSLjbg K62o6UBFxaE3y2oqcrFeyVjHZmsqOiIs80ZP/T1Gi3CkES9QkZ7MkMwX/TwM GWxKp6lS0Up6F2VTVAFW89fv0wUFKuIcU3LtFSvEKgq+83TLUFHJiH6OW10h ViBQ7t23l4qa1EkjgoFFWPJHi9M/1lNRnjedP6+9GEt4SLht/4+Cbiw8ujon WoLFKcsVjPxHQZTso4ldt0uwp6/W7ZicoKDUJ0b9IfKlWLBlzthvGgXZTdaJ 3igpw64OLz7mTKKg5VAtbsvNVZjxhk9Zi3EUZEYabhQNrMK0pcsbR59RUASn yHjdRBUm6+H9X3soBQ2nqGxN6KzGVleYdk/dKMho/3WTltxabHYvNeiuAwXt ng1UEz1Yhw1rFrzysKEgqSu3yTFv6zBSuBvlgikFPdzlfmM4ux5LEBw/vkOD gvTU77hLdCDsqXKb6UZlCprvzCCJyDZgD8zfuS/JUVC/nqaHiU8D5pxy/W2/ OAXpPrxv6bSxEVOV+SGQyktBBja5y3nQhH3S6h+V6u9EjOi8jdrMFqzjes06 ke5OpLdd+Wa9PgH7EPF6Dy+1E10rOFten0PA3lIumUw3daJRW8snri6tmM+V jx+KczvRotc7oSNrRMwpqLQvPbMT0VUfxEc7tWGWqS/mY5I70X2kW/G+qw07 NWIsfetFJzpZ0RAkV9iObfXqfKkW0InO6rPNyQaSMK6XeUUyPp1oFVOxlZ4n YcuVj0m7b3aiwfXaz3bfJGPf/+qyr9l2IoLIbqN/jp1Y0aNWt2bdTuQm+Tkj 3oeKGaWhUwY7O5F2oKub9iod+/MnKKx2ayfyYcdGnYwZWLqxRrs0XydKT6k5 xZnFwBbXqgy518jIwsou6YNZF/bGqsS8dZiM0NZDx8aIH7EzFR5vjn0lI7Pk 8lt3pbqxWX65b5k9ZGTPtXKoObIbO1X/3j6kg4z4/UMk3Uw/YRO73rqfLCIj cuFJR4G/PVis97WSwhwy8jV67PzJtRc7Qdq/sDeDjL4d4jobOtCLPQtIDvj7 koxsLyqHVjb3YSp98Q9r7pCRe3iUnl1uPxYaF5mopENG/mY3vjoOfsOOzJz9 mnGSjHq/brP5pDqI9Z7esF9QjYy+M1+Ilj0YxGQWQrJ+yZLRqcbBgWMi3zGG SVBxwVYyulu5nD18+QcW+F59fg8fGf0698X/9/sf2AGOZeUnnGQU+fLNcSe2 Icy/5Fad6x8SujZMd0rIH8L2bfEgSn0loeC9h/Rad/7E2pyO8LzqISGZLS/7 sv1/Yl4NUwYb6CSUeNHWdH/fT6zV3Znxs5mE9KKlGqeTRzA3it2X9BwSCou1 JeRjY1jNY7Pfu31JaLtyQuPYx0kscZL9S+5NEmJLPxCx23AKC9QvaFV1IqEr AjIdp9unMIx3Q4KpBQkF3bdyjidMY42RVSejNEno3lXJHsEeJpY+YS8tok5C TIEU5Cg/iz3Q2yKUrURCDaX/udncmsW0eVxGmw+S0IvV77dLOX9hbY92PV3h J6FT0bk0C4U5LGec6PdoAwnta3YOeHxvDovU9bHdwU5CAtKTw0vUOcyAu1NJ cb4D3br5WjLL6zdGjQjud/ncgRTNVfVaifPYp/DvUp+zOpC5kN7VwvL/sMrR J1udUjuQ/8/RT0dE/mCvdNRWF153oAXJ5GnNe3+wKxtiqFuedKBxMXeK2vkl 7EuY9i1d7w7kJjO2IrZhBfswMmvd49aB0qr6b074r2DJZ5J0rzt0oE2kMlu/ qRXMhmtx933zDnQk0tZitXcVG374rrkKOlC2xnHk2fYPI/w0yT9zvAOVesSV i+uuYVmn2eI/KnSgA1FjlQzSGubEae4ye6ADbRzcXJPuygZToTxbpPg60DqN x8dyQtjhd8gNq/jedvS3x0olZJwDyGbRR2IZ7ajb5gQHv/J6yDxY/O8ZuR05 xUyjvJD1cJE0nxzZ0I66Yp580hDjhJqtgd+CstuRspnuc+4bXHAvLdLG3r8d 0U9Lp3ZqcIO5d568rVc7Gsvh4X78hhsUTlPYrNza0dThfoGUv9wwNLYl7ZJN Owrkm5ocaOaBM/Kvv+udbUfX8/dZydvyAR96Z3dUuB29S3lZ7Dy0GX4+a1c4 srUdldNSjtsfFoAPdpPrZPjaEXtXHt+IswC4c8llSLC1ozvJwV9cfwoA41zF 0I6xNuRkFtXYObIFXg202P+rbEP69un7vLcJgWfBiNJKcRvS2uk9mmItBHr3 NnL+ed+GXNlqjCi5QrAibvD2V0obOt3etfGE9jawcu36ORzehpZ267uhkO1w YPm7A+lSG7JseHXkmupOKGMbsjpzvg3Jr3dZEHyzE7Q2DF9s1GtD38645imz i4CN0MiZyhNtKHZBaeAnVQQSjkxIZoi3IeeQJb2Au7tB4NrcSACTiPaTNIKE totCsvPvrwtjRCQidPpYlakoHPaY/+Txg4harx4MOhkrCnpBi60O3USkRfGj 82zfDw/jl7Mu1BLRhbagg18kxGCZtM5ROpyIVIzqfxp4SUAEg8P67T0iuhLS TapskIAdfesviQYQEcd28//UBQ6A0giXzvYbRMT7y6M4ueQAuLPxHlxnQkS5 ZOJOZc6DMKwkONq3l4g4f3Bxbvt5CLzVhb6ZChORQsLb7MEz0rBOa1sPdQsR lV/ZzMGZKw37jHYQCeuJaGHnqIWzjwxccd71rniiFXU7fxjdI3IYqEnijo8q WpHk5b3rsy7Kw8XtCae9i1qR+b7lRrNoeRh4KiBxNbcVcfA+K6xrk4eJu38H 5ZNbUetdxddVJ47CerueK70PW9F0ftzVt/IKoCr52PCgWSsyiPL20tdQgg/J 7Ie3GLUiiU/bNt6+rwSnd/jzrpxtRd961twfEJXgwsbrbRSNVkScNixXuHgM 3CYwrVsSrYiwa/WWcbAypBbMHSP8JiDXlrpS+ooqSB50FiqcJqDiiNL5BaPj kJ/ybe7VKAHxGTjy7H97HGqekQvd+glI0MHcOf6CGnz0yjok1ExAw7rhEZdr 1IFb5cqeay8ISOKqFfE7wuBZIW3FIIqAaKTFIz8OAGyX0vmsHEZAn5KnynY9 AZDYqRTPE0BA757b/8iQOwnYCv+WElsC+t7PXebFrQleqHE9+1EC+vw0WE/u ixbIn5SM5JYhoIMk2ta4nadgpiFy89YDBIQEg10KL54C5yYTEfGdBGRwUkKT vesU2BB+yp1mJyCbK2r0ix+1wZDEbfGI3oKSJy9ZPFg5A3wGNwefk1qQ5l5S 2MopHeggM64nEFqQ4QEfeZ0nOnCakujxvroFRcu3JFmJnQUN+uGwzrQWNCHw ypB0UReke84Xb/FqQWTfgNn4CX0Yu1ShLOLWghKLa9jOaBpAVq9InZhDC3o8 JGI2+coA9n8ealW80oL+mbwtOaB/DoS/+A6YabWgEE5FSkqtIXANvd6QsLUF 3V81lvAfNYaWa/+i0vla0JUk23zxXefhwbDd1vdcLajc7ceMtdF5+PtTZk/d cjM6aRly5ln1eZgfq1f4+qMZhc1fT/sTewGGZr5fFSttRn2Rd/8oOZvCxcwD vDl5zSj6/Y+7A+9NocPcuUouqxntMN08occ0hZKW2a0nXjcjOen5nFB/M7iX sEa8dLcZJRk8LcmKvQh7z+xReKLfjHKXCYaPFy7DixWbb4Knm1G+mHNO+mlz 4CzOjErAmtGZriu7M+PMYWqX7Oi7o81oZZyfcFP9CtT+UnvTtKMZaX5sjnN4 ZgGXky5z/RlqQoNmFtv4XayAfOFNafCXJlRygp9nut0KYOOgDWdPE5KzrbH5 Jm0Nkt6OtVs7mlBoh+N6rllrWDh7y+NwURM6EPGV+2OzDeBvZ5/tApvQ+fF0 mqWfHXTqUws6hZrQH5GT7k8vO4Cqd4RW86YmtPZOgTkW7wCZCZqfqjY2IYk4 sas/exwgcLz0b8ZqI9pj9yuj3dwRpMNfGQQMN6LiIEm643UnCGuynZAsa0QU +lCuVpILzI2LBO8uwPOpyoddRl3g6paPW7ZmN6LpkXA9fQVXULI5c/xvYiNa EtmWdLLDFX78lY7oCmlEYUWHD0lw3ADs+PyBeyaN6PSF79waCe6Qa5Nf7Xuu ETltK5VFs+6wLcLhnKtOI/KeS9zPK+EBU596fS6qNyKX1MdpGYEekOBT3ywr 3ohEmsWX5xQ84b/CMNu+uQaE7TO+1l3mBUWSO5MUXjSg58+9t+gK3QLGg+LL WY8bkDfP97p7Jrfg91ddIZGHDWiryehW85hboBwf8JjdvwGtt60R/yXkB3Ub Bm7TrjYg6/56oZ/7/IE4lnzx5qEGdKsnVnPbxQAY01bZ+kOsASWPEZl/UwKA J43aaba7AfWA4eekiQAwMGc7fWJzA1LZqHeR+8EdyIxpdhCeQOjC3XDO6upA qDXTFTW9j5CsKzG869xd+McfEK/ug9CpV2vsoxl34WRr7iZxR4RafQlhHct3 oVWZ7+8vA4RQTNHOULN7wNhB7YsWRoj9JFm4lec+jPWZxpAKP6BjeUpPd0Q+ gO1WNlynvtaj9z12OZt+PASi5A2SI70eFTuPe5SKhIE/8/azqJZ6dGfDzeIe kzDovxcj8im3Hg1WVWDpxDBIzWg94uxXj3hXQ+XMy8NBelz2UrRAPbLy+yiy L/cR9Bcf313GUY8O+Oi/kJ58BFEBZ773LtYhKeProS2ykcDktXEV+1KHiJza H94VR0LZkZi75Tl1qM9VjE+n6TGAz9K7fq06tD8uIKlt7QnManDdYFOuQxvV P/cq6D2FdE5BhQOH6lBJuWuK+sunsD5etu7m5jrUq3RnUfZwNHRUW9PYB2rR zgi0+aLCMzBdI/w56FuLhAX6RB/efg5OkS90fd7VoI9L4dI+erH4/hzZfyux Bq3jd1ey8IuF3KH7N25H16D5opabcZmxMKXh+TzYrwZtryw342V7CR5Mo74I nRq01N57YLXmJdw25XdOGq1GldVn39prxkPk3oiI1oPV6O9Np4+VMQkgQ7or 0r6rGl3e1NouSE4Asp9fHmlzNdKOU4zqWp8Im+gONNp/VWiy82LwPb9EiAk5 LdxPrEJ+3ANGybZv4M3YumymYxXKdIo/ZKmbDPklQUTh7Eq0b/VPNxxLg5o2 xZwdiZXoJm/6pv0WadD6dTxy+9NK1De8r/nM/TQY5LloKOSD+6rLkg0lDYSu HenefLISqdV7C312TYcAwW8/uHor0IkoDm6Zsgw463Py3/yGCvTrisKb3MAs MItc/PZ7uRzp6RMnm99ngV1qXuPcdDkifn6QJNufBXfIwg9nu8pRytm+0Gm1 d1Ag8Yt3KqUcZdhQZpT/vYNt3Wk7h1TKkYF2g51SbA78OMZxjO5YhsSWV7VU 2PLhq1zmUL5FGYohdRrwKOdD/6HTLyKNytCzBOsBGbd8+LgnnHlKpQxNtmsl W/TlA5GTN7eCqwxfX1X7fCsLIK976743b0tRntnvV9c1i+CWrxi341AJkg+/ VDwuUwJe7s2Vp3pK0F/7Fb1V/RJwd7Z3ECWVoAHC8ik1txJwuprV3FdSgmTm 0miq+SVgcVo62OBBCdptGF9+6mgpnNym8Pvo/hLkXbtD571mGXCXa35ZtSpG nvx8DU9DK8BLOK2/+3wxmhzT2e+RXwGf77B9LtAuRl3t9OKITxWQq4U+2UgX o4zCTSPWhyrBgKZBa1koQssTLkdz6ZUQPanSHBVVhP7ylUh0yFaDtLblheM+ hSj9jgbPhk11sMKzy2jSvBCpTUdkcmN1QKb36SdBIVquVeTXuVkHN6wvnWbn LUSL2p7ZXtQ6KAq4oNqeVoCyRzIio2PrQbn47F5zaj7iv0memzuEQGvvsQl/ 6Tyk/4gqN3eyEWY58x68FchDuYqtmIJlIyRNi+1iLL5Hz6v21Eb7NcKfOgED meb36NvgtS0ZBY1QaDGV/8XiPWoqMEYye5tg9+sMT60nuSgiw43Stq4ZFgW3 LvHOZqPVI5ZHtH+0QC43c0NK+Vs0lN3zXGS5DVSq1dXCk96i3qFFHheRdmhx inBzf/gWNRVF0hhq7fCNuJ8OZm/R+dEI8dk77SAUZpowOJ+JyALvN5uvtUPQ uhpZMaVMpB15/9UADwmMV0LPvy1JRzHGPUrXlTphpu+Y8iXrFHRnImuX+SgN 9Pj+E2kweoGKnRpLHXw+QW21R26Pnz9iHs28TRcfgGmO6qydV/ygYva3eMn8 IGRoR6+VUF5AGUdT/QrXMDy4HJW7dTwZ5ngYTb8LR0DsHTYRuScF4hQMQ/pr RqBpYfYQx4UU2P6zTrOeMAIcMWY5v2tSwEAXJdzsx9sdNpu6nEmFVZ3V2XCu UdBO672gL5wG5i8G2KItRuHsdldj/rp0EJpSz2pgGwMjtmf6zzmy4JLOjOZt 5XFo4iqmXtiTBVGeKwEPYRyU+RkmQipZ0PhiQ3Lk2XHYLSJkGe+SBZvK+OLu XhmHCcVXbkn0LDhj8nFVMHgcQh1Tn+SkvIPAnqTzw83jUEMpojaq50DgZ5US Qb0JONJNNwkxywFvZ64g1QsTkNY/16PtngPX/dWYZlcmIGJMaZCYngMTtmGE AJcJMFtXPdvJnQuy4X173SInYPZY45bPPblgpX7961TbBBxIopvMeedBduvI FfuTk1DVvxv78zgP7lmZTYnqTIKBiJPUv4w84POmCPacmwSf+H+r3B/zINlJ /KC8xSS0PJfJ2q+UDwGVdp4vfSfBLuzhH+P5fPB4wnv6cM4kJLsfTyr0KQQt wz6n17xToFAQGl4eVQhS+WFRkVumoHWK6lmbWQhRjFIX3x1TMO3scIb4sRCU K4KvqopPwd6Sdj93kSK4XKRv5K02BTfyFkXDA4pgbaFuK3KcAt40Y+8KtWKw f39bqb5+CiY+VQrX6xTDuwQXBfPmKWjj2/eh2bQYqMwG8Zm2KQj1n95Iv1kM aa3XZ9Z9nIJVo8jkyXS8XUAgrHcc7/9fc7sobwnsy/ebVRaaBqqliujj/hIQ SFxa7r82DQUvkgnPx0rATMOmMslpGqLaOF1fLZQAmnrz8/KNaTir9LH87eZS 4L5vm1N7axoaeD31G06VQusBDgPFR9NQXJN7a+F9KYjcuM3OzJuGGOG9ndaB ZfC4hNevmjkND1wS3kZElIH7yb1c7r+nwaNue3BxbBlcruax3/ffNBjYbJbj yC8Dyws8SR7/poErm+151pcyUFD29e/mmwF/lSHTaawcbN96heZJzYDVxeyB APYK2G78ZDzfcgYMsiXKM/grYMVg6QnBegbUl1OfkHdWAKn3ZWSv3QwIJ7/G 9ipUwOLr9cmzTjNA/xmZ2mhXAfEzvjnjPjOg7XvDfmNLBewoHlDkiJqBQ7EK Uy/DKiHMSfT074oZyO5m3Lr/ohIi5MobPatnQGqHN/uN5EoYekY5N1WLO6F0 u3ZFJWySsH/b3YA7VUlz7mcl+D4ZIN7uwJ2nHGd4ugom5fPDeL/MgGSL2skN 66vhaSbziNfaDGRx9nfMba6Gm8Lc1QHsTJDUuWP2dVc1aKbs6L3Lgbuj1qVc sRq8fIJ/3t3AhAM0jZfXrlVDzodNRZc2M0FiAJtATdVw+seRWOe9TBCf14r1 v18DrqqRDQpqTFAlS1Adn9bA5/vPtJfUmWCQycVzKbEGgt7EmtedYIKPacfd Y+U1cFzfUU9VkwktZedd58ZqYGP1SfqGs0xw8LXRcjOuhQL55GpuMyYEnNMK srhaC5Qxr9eJF5nw9IBElZ5LLYxEbbssfZkJFd2jhw+F1kLFz6ZQzIIJG5Td d45U1sIO0cl9WrZMyF4MmrXeVweNFr+9atyYUEexljGSrYML8cueu28ygZal 6YAdrwOivVjCHXcm/LnIObDbpA6Mk4b9jnoxQbcyitgXVgdbNlNH7vgxYcIv Mdlkpg60l4S8ou8zQXapykCnvh4Im985UmOYYDxdWHO5vR7MdYwGybFM8P2e JeXSjf8u7d58qe0lEz60x65/Ml0PkUPd+tXxTDBK8Khj7PkAoavteSGJTPBS l5K1Cv4A4k3tgvXpTIiT25fgHvkBHEv2TydmMKFGfPvG+3EfwO664H/+mUzg 4Fs/nFHwAV7rzmYfzmJC7MC3xPGvH+CwDE/f/RwmVAbF8/oCgq0d0Ry9hUwY 8Hx6O0wfgUhBk0FiERPYHB6Oxl9CYGZau2BZzISzht7NNe4I9lubePWXMOHz XqM7bKkI0p5U2RPKmfDPOmThNFsDFFlJvDKqZcJ+dvXrdJsG+JCv1mtEYELw mUvzFo4NMKaS1DKL+/Nj75CRGw1wvllK5lkrE15sz0tbCWiApBVu7w4iE9bL 7vl64GUDeBqJnTrcwYSRi2sXA9ob4F66zd0CChO03uwaWU9rAE4Jw1uqVCYk f1fxjf7UAI0Tr7c34r7k5hGTOdQAu1ODrSg0JrTd/06l/G2AwB9jl/sYTMjN az4rrtAIrxc9zEo/MYFr7ltPvmojEBXkDx3qYYKdyqqDKjRCiJwYPQn3rial h+cMGkH3xYd3Ib1MiOp52+jn0AhFTrRyzc9McF8XoUZOaASrmYd+j74wQemy gawvRxM4W6tTLg0x4ZXM74/PuJsAaboceof777/XQXmbm6B8eenDAu7Wt6OU oV1NkGf3NeXZMD7+3w88Lyg1AZX7qUP9T3y9P62ukLveBEGjy27zo0z4amtj re/aBLUPbsmpjjHh1LENGx09m4BPPuH0Hdx8A6bmyUFNoHSV7LWGO/nQ7Apf XBOoWE4srY0zobFFUnOitQnIevPLPybx5/tV5zhnZxPweyxm7p5iQqSrz4v9 XU1wZfBEtRnuC1ubhi5/a4LnMHmgFfew9dUw4n94/oelUuo0EzauxJAypZph YO2llhqTCYZH2S9aRzaD2Br2fNMcE+6sVl+yfNYMD1eLRVRwZxO9zM3jmuG2 V5WqNW4Oq2FLk/RmOBx8Q7kAd1Uk8ZpOTTMcKYgy0fmNr6fhJ55yE81wc3rb qMM8Xr/wjLfsbDMw9xfLPMIdGLDmc2ixGfxH6wTf4/4k4Okvvq4Fbhck0adx R54wvbtDpAXUxxx2uy8wYT5O5MmabgtYXnv8znYRr2/X9XTVqAUuXU4JD8Zt eDjq2ZJZCyRFqAsn4s5p/hvz2xZvfyRs2IXbanYwYfR2C3xPtt5/8j8mEHXf ZVNzWsB3R/9Gvj94fSGbXHJhC/QkJepK4BYbFM5rL2+BJlWbMxq4A29FFjY3 toD8kdRbrrjlM25UVPa1QKStaUsr7oRVxZYUbgK4eNaney4xYUsMf/JeAQI0 UpyywnFHHBr1S9pOgKtuv68n4fa7mCCTKE4AsQdvdrXhNi1ii4k7QYAejZe+ IstM2GzfafvEkwBLmNT9Utxhy1nqfP4EWO/E/oqA+9+ze9seBxOgr6vdtwf3 VL1ie8RjAqi5lEQs4+7YkSAf+pYAZ3SN92ArTAglOawF9BHgi/qBiFrcK7Yn +5a+ESDgyNTFDtxef3aW+o8Q4KDJzsVe3LYHOh1u/SaAFon2bgE3dleR4snf CnfOPh+VXWXCkgJbkpNmK4Rv6daLwe3R3ndrVKcVBr3lrFJwj1mXGjsYtkKo 1Jrue9yfohzW21u0gnVYd14T7rIRsqu1byuYe6y8Z+K+mfBa7WJOKwS3a/zS +suEmQ9/DzsUtoIbSUHEAPeNIdv9t8pbofpJpqQZbjdZ6Y1xja2gcg0mHXA7 f6jp7u5rhV3718k+wm3/o9/DjIcIs80FlDbcw1wn7a8LEEG3s86EhvuaTOYl 3+1EcDL829CD287HDXspRgRa7CGzEdw2XH95u9WI4HouxnXdPyZYSO99Z+pK BAmd2EfKuD8bPkiw9yRCSX9ZkQbuK94jT3z8iHDWlLtFC/flugKf2BAifOlW KTLEfdEQtD4mEuFN5EzmddwXvGy+mJCJ4BPwS+4ZbkZcC+0agwj9S3eVXuI+ XyvV4t1LhIaTWVIJuI3X/8qNGSbCu5y7gxm4z8Xd9+9aJcKKcWFMBe6zNemC JofbgErMkO/DvTX34LdhxTbgTA5J/IK7/3Ve7i21NthsGLz4HffN2xWaCTpt IGsSHzSBO1a1w/27bRsErlvpXsY9WPGL5B7XBhFl7z8Lr+H7b9atePakNvhY U2G1G7d33IpdTEYbqO8a7t6Hm+sW53JFURvYS5gmS+KWPbZT6l9HG0hVyL1R xH279GRo1FobZCrYuOvj1sogGO3laoftEjOqhrj5YvR2FfG1g6Dqnj/GuFO9 TEu6drbD4OT0pYu4W486DYootYPPrHSaDe5n+6ff5+HnrpTouF3XcJtv8fLD NNthy6WKqOu4p2bvbLIzbIea4RgTF9xbi6I1cpzaYbOMup837oEUoY3q7u0Q Io5yfXG/jX7dRfZth4/rZrv9cKu6Z7jMPmgH4/BOwUDcVkcqX6kktUN4XJx8 KGs+8r7OE+jtMCMhxxWDWyPWd+fxXvz7WPlVx+Km3OHD8r62Q9weM4c43L/1 1MJfTLZDjItM/mtWfvzlTmvODihezP2VwsrTZDEGbwfckOb2ScNtW9Vsd3pr B2wQzJ1Nxx0W/uu9zL4OaPTk7HuLm3rgHPZHtQM8f51zeo/bjn/YzhU6oE2F +SEP9/x8QPjX0x0wcMNdoAC3cEs2reVCBxgKXswsYuXt1l977tYB5/8UPS9n 5ZNrw6VTO+C3YujzD6z+wi7kJWV1gPO9Y8mIdf3NcZpAfgfcO0nPasB94sQO kf+qO2DHS468Jla+3yuvuasDupfHwltZ+WZuuvLnDiiqCvUl4n6fm7qQM9gB lK+B1m24abcp2LPpDkDdlVIduHcKS9MtN5AAslqed+LOW2tYoPKT4LBk8TUK bmz0ksgpIRIoudgoUFnjr3h47dB+EkipqrTSWHnT7wsLaiRwbuVr72Lln78S ib5JAhkJ/tN9uHu5ai7H+OD1ep58Ydk7sD8uPoAEvr+6vD/jznbcK5gaRgKt IurrftZ6wTJ5i5NJYLjVgvyFVb+UoFueSYJi7y8mX3HrHBoNr84lgeUl2z6W A4Wk1zdVkEBx+NHXb7h/ThSuMigk0Kzay/iO+54NXa3nIwmM/G/q/cAt8mnO v/8zCRx/LjSwbNh4bGFohARmKoTsIdxV8bXT8/9IsFNR0P4n7iht4tftcmQY pb18OoZbsmZs965jZOBUPTrNcqMcj8U+dTLIztrojeNeFDnXc1CHDBZjz9km cFv/YlBVrclwAFotJ3EvO8zzn7hOBunfz4pYjh3YZqDpSgbv6zs4pnC3ES+3 6fqRQYfdJZNlheSvDVeiybBzU2bvNG6yINua1UsyGOwlic3gdny0/8S1RDJ+ fqe7svzGx77a9R0ZnJseL7PMpT9RHIjIQK4+xDuLu++/hfRkJhnCHK6v/sL9 QVW1WmKRDPQ0GfU53Om3A6i5q2TYY/fTn2W3lX8rFdydQLLX/sXyv38bzKji nSDyWvzTb9w/QM/VTLoTQuKX+OZxE+9F3e+X7wQJpyEtlp+t21IweqITmsPY 81gW4xLZwHa5EwzbOr0XWOPTsdwTZtUJHtTsDJYnw5MV+a53wuuzZQyWy7jF bYS9OiHum/ORRdxn+GWr5aM6IWolZ4BlFyHM1bahE/TrpHb8Yd1Ps3v3R1s7 ofzJPXWWFeOa4m90dkJmtKo1y6s7dFpuf+4E8aiuTJaf7jLe82K+E/rYVqWW cHtZvlAUXumEnONvzrJ8KemjbjI7BWJvFDmyLLrP/FbuJgpELZzIZLlUzI7a JEXB3wdkdizjfnUt8+dZOQro+uYqsByYObJCOUYB74iCcyyfkXSV6teiwOxu owcs9x7yuf/bkgIRk1IjLK/KhylKPKfAkvWX1yu4x9YuXFOPp8CxbNV8lrsp +2IuJFHgi6ZWA8sFbtVz93IoYB1+/SfLttlTxV8aKeC1d7PsKms+/Kq/zxMp 8KR3TYNltTNhW/goFHiQmX2OZaHhfZ5qnylweUXyJsut+0zk4+cosNl34T3L pTP7bAr+UPDzCaGG5dT6qWjCPwp0vrnYzvJtizDmbx4qkNI//GRZNr66wFic Cryvmnb9xf18k+hhHlMqzDk6BbEc/GXKcv8VKugMlUWw7JJXHaVqQwW1+7QY lrX1TKYc3Kgwouufw/Liw7D3zaFUGL2ewmB5yNSk/3MkFdjsAwZYpomL8s49 o8L9e9IjLOc0VruIJlGhpZ9viWXLv1OHgsqp4DA/tfsf7rPkavPYWioUM0IO sHwsMezR+0YqrO1YOMzypuOi432dVJDSd8ZYbvQxyVYeocK6heyrLAsuWgr6 89LAjrEujuWb5uRLPptoUHnV/g3LbXXqbzy20GCnQm46y8EhIgecd9Dg7v3h ApbHBHqVr4jTIHFsXyvLp3x07lyUpAH7f4UklpN7KtCFQzS4WXWQzrJJ8suz +nI0IIxT+1n+IGNyRUOdBjUt/LMs74xuSlbFaCB8bGSeZZ+5o0NKmjSwtMhZ YvlQtYDbYR0aLB75tW6Ntd+coQTtNaFBmMszIZZdbHXT2Fzx+m9MlVgmtFT9 XL1Bg4nwNRWWRaWkpJc8aOAmmaDOcvcMV+mvWzSIepGixfLJwJaWHw9oYBw0 Z8RywjdF7m8P8fHbipmwvKCVca4/Ap+PDdoXWc7lfvCp6ykNciKvWrK8LR7G WhJokPyT6ciyx3KBbGMSDaSMy1xY7ri617M+lQb1em43WL4n8XepPIsG/wiV XixPFNfwviuhwWBwUyDLDeRjco86aCCaSn/6P78st27tpAFZQ/D5/2x17BkH nQbnanVjWEazSr+CemiQJhcXz/IHIaVSr2Ea9ASXpPzPWYpC0xM0yL/2MIPl elVFX8dfNHhQofCO5TpLBRXLfzQIPShW8D/PHH31aT0dDEYdilmuvXd0yZiX DhLmj8tYrsmUrz0tTAe/7f41LFdPHQE5BTrM/V1rYbkq+EhqjiodlLJsif+z wBF2CaCDavD79v9Z6XCzsAEdavRXOlmuvCz7kN+cDo+PLtJZrgiU0VnnQAd6 cHo3y+Wp0tz/edFBfTNXH8tlLYdIk3fpMH5BcoDlEj4po+7XdHjYWvSd5UYD De2pt3S4mbIyxDItyvg4RwkdNjvtGmF5kGx/ROQDHUaPCI6xzOS7LX60gw4z 5J/jLG96ksZv/YMO5SsHplmW5e/4L2qZDgx+JvN/641/F3lMmgFbuizmWX7H 75aqbcGA4eD4/1i2LdUYUicyYNvA8grL////C7Co2/WP5f8DBAwzCA== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->450, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{-0.299999987755102, 0.299999987755102}, {0, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.429257866123845*^9, 3.522386122227051*^9, 3.657329746753704*^9}, Background->RGBColor[ 0.9366445410849165, 0.9366445410849165, 0.9366445410849165], CellLabel->"Out[26]="] }, Open ]], Cell["\<\ \:53ce\:675f\:5148\:3068G567\:306f\:307b\:307c\:91cd\:306a\:3063\:3066\:3044\ \:308b\:3002( 1\:30b1\:6708\:306b21\:65e5\:ff0c1\:65e5\:306b4\:6642\:9593\ \:534a(9:00-11:00,12:30-15:00)\:306e\:7acb\:4f1a\:6642\:9593\:304c\:3042\:308b\ \:3068\:3057\:3066\:ff0c10\:5206\:6bce\:306b\:4e00\:56de\:53d6\:5f15\:3059\ \:308b\:3068\:ff0c6 x 4.5 x 21 = 567 \:56de\:306e\:53d6\:5f15\:3068\:306a\ \:308b\:3002)\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"%", ",", "G567"}], "]"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[27]:="], Cell[BoxData[ GraphicsBox[{{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwt23k8VN//B3ASZStFJW1CEooQQvcdKVlCoRLZkr3skdBCSEpFFNklZN/X jm0MZswmISpFdkbCJ0v53fk+fn/N4/k4r/s+Z84998w9f8x+O/cL19exsbHt 5GBjY33uMueXVFTsQoVP6TszqsQxMhSfl5PvQu9Nmvm8JCWwQEmzIJnDXSho eSYpJk4C+/r7zUfxg10o9bJWzlrQASz1qWyI0K4u5Hx+/M2gy0HM2JdWICDc hWpPo53ZUwcxdkufz3zbutC2PKMf0p5SmN2huqOcm7uQfPjOmsQHhzCJFv3B hXVdyEngsQm5TQb7mMvknVtjoEq6kvAmO1ns4fMYlZlVBrK48vjFw3+y2IhV /9ORRQb6xaFXd1nzCJa95HKiZ4KB8tpStmj4y2OycpEJVQwGyjqp8CrkgSI2 sO1IaxmVgeJ8ZPn3TCtiT1bpv4rIDMQsenV1ylwJm2nfqZvTykAeTGvtK2rH sCL7nP9e1zBQaCIxF+1QwWz0z4nHVTKQYawKm8lLFWyLwi/DF2UMdMtz6HnQ NlXMa001K7KAgYTcTxZ37jmOKSW0md5JZ6CIXWOuX4zUseF7bvf8UhiI/YHy rbwhdeylo0Ce9xsG2t+9ohIaoIEtKl3mcItjICvt4tnHxSewKuposWUkAz0/ 9qjJWvwkpsG5YTPmxUD3K9+dc990CjsblmC4dJOB2opF0rSCTmEmG448LXNl IO6g2w7hM6cwF24zfpnrDKS9I2cqoVcbe8WfwSt8mYHWEVT3eJLPYJlPlfW7 TBmorC7VysxYByvc3BH59DwDva73pu3p0cFat/zi5tRnoIt8FbYJ02ex39tg 49wJBlI852q26aQ+9i+OoZOvxkDXt6jwfx3Qx3iEHcKdVBhI4wX9h3CQASYq 8oTrmzwD1T89v1Wk7RxmuLd/PVmcgY4T/SMVTxtjuZJ+7FncDLT7qhJTwdkE q3jHo2nLxUByR+fuVfSYYI1Syfd2czBQskbgYOJZU6xXmrD2YpWOjrY370BH zTAuOcF/d5l0dMwz5XK/2CVsa1HWCfUpOuJT54/99vYStueoWtDiGB2dYKek lchcxpQUbVfdftCRyPF3nOwnzTFblcJl82466mrLjZmLssDcqrTUtjHoSOCU 78Z9UpaY//FPt2kUOgop1Fx+3WqJPVX/++dMGx15jW+51MhvhdWB/n+KtXS0 NWtbr/M1G0z47Ohv/jS8vxcUwfiAa5jog/IstmS8v+fH+/q+XcMO1oWY/06g oxpjF3ERHXtMWV4U9cbSkaiB5M6aXdcxE2HzyIwIOpL7nXnp+VcH7MqFgyfi HtIRj2DFYK+pI2YXtcCMeEBHH7NtzTw6HTEPthdmNwPp6LPIzd5aghP2dKxD 9LgHHVkSFrN5PrpgcWKvu2Ru0BGxxvDlNitXLMnSMWyvCx0pLEhEUydcsTwa xxSHPR39ZLx3CuW7gbVXaVRSLtHRNbN6QWcvd2z9o4Jz9kBHx9WlNMxcvDC+ 5kC2Sxp0JLNrve3uNi9M8K9eqe5xOirvc5MoPuiNiXmOCssp0hH6+WXw+pQ3 Buaiw0uSdGT0wtJgIcoXOxMzEzcljufpe+7sX/bFDDvrdL+J0pHrbKeQvfMt zFLTvLBFhI5uVDQLmBr6YQGHXgREb6IjpZyxlr8Kt7EH12wOP+Clo78/cquW i29jj5KODPpspKOKd6bdtooB2KstpNNX1tFR4CWj1cQTd7CKJY4tBxZpqD48 1oPbMwj71e77ruYLDU1SSqOvyd3HhDbW5td9pqFOzYXbdiH3MdUzbGUfemgo zq24cLr3PhbcFNnQRKch5hxVkRDxAOOpTenrINDQvm1O37VXQ7DDS8PfyE00 NL9vPNHzaihmrCI9QkE0tKdZ+pRDQygWV1o2x6imoQkqNYH4+CEmltfO259P Q9zJcwsmx8Ox0xObtn7JpaF798+VZueEY05SpsLf3tHQcHhAOPfuCKwg86vE UBoNSYGdsdCGR5ha0u8Tky9paB2PlKT5f5HYhad7PFaCaMhc0bn3rm405ku2 u/U3gIaGxCnUE9+isVc82YFrfjS0DN46PerPsK9hCo84vGhobfM3ebfeZ5jL XZ10Xgca+p4oqflR7AX2pD4qm/8aDV0NLtSWuf0CK1qhF2y2oSFxsS/Gm+gv sEU/y1rBKzQ0bi/SH/MwBnvg4flxlyENRTNa/e3WvcTeFlR83qNPQ041To1f r7/E2qZWBvedpaHN/KrNoqSX2CbnsGlxLRpy5t8rtC0xDkuwTeSSVaYhhxYC Z+r5V1jJBYKqxl4asqRuPVQt+gaTl1m+8FeEhvreptOaC99gBRxyNz7soKGa eJvbkZpJWG7Zq7STW2jofRvl3N0byVj6djee0+tp6PGWg7sxn1RMlJkqwcVO Q6bHthveIKZiGtHvg56uUFFS8+i6o7vTMMVfwSMvZqiocx9bSExHGiZWfqAq 8SMVXZjd9DdBPQPb6xA9tYdCRSKU5Een3mRgIjuWRFOJVPx5ixZD/zKwrbfJ jzJrqChsydXyfHsmxn7C2yI/lYqkBTiu9fhmYYMtDf8+uFGRe5V7bLxSLjbg K62o6UBFxaE3y2oqcrFeyVjHZmsqOiIs80ZP/T1Gi3CkES9QkZ7MkMwX/TwM GWxKp6lS0Up6F2VTVAFW89fv0wUFKuIcU3LtFSvEKgq+83TLUFHJiH6OW10h ViBQ7t23l4qa1EkjgoFFWPJHi9M/1lNRnjedP6+9GEt4SLht/4+Cbiw8ujon WoLFKcsVjPxHQZTso4ldt0uwp6/W7ZicoKDUJ0b9IfKlWLBlzthvGgXZTdaJ 3igpw64OLz7mTKKg5VAtbsvNVZjxhk9Zi3EUZEYabhQNrMK0pcsbR59RUASn yHjdRBUm6+H9X3soBQ2nqGxN6KzGVleYdk/dKMho/3WTltxabHYvNeiuAwXt ng1UEz1Yhw1rFrzysKEgqSu3yTFv6zBSuBvlgikFPdzlfmM4ux5LEBw/vkOD gvTU77hLdCDsqXKb6UZlCprvzCCJyDZgD8zfuS/JUVC/nqaHiU8D5pxy/W2/ OAXpPrxv6bSxEVOV+SGQyktBBja5y3nQhH3S6h+V6u9EjOi8jdrMFqzjes06 ke5OpLdd+Wa9PgH7EPF6Dy+1E10rOFten0PA3lIumUw3daJRW8snri6tmM+V jx+KczvRotc7oSNrRMwpqLQvPbMT0VUfxEc7tWGWqS/mY5I70X2kW/G+qw07 NWIsfetFJzpZ0RAkV9iObfXqfKkW0InO6rPNyQaSMK6XeUUyPp1oFVOxlZ4n YcuVj0m7b3aiwfXaz3bfJGPf/+qyr9l2IoLIbqN/jp1Y0aNWt2bdTuQm+Tkj 3oeKGaWhUwY7O5F2oKub9iod+/MnKKx2ayfyYcdGnYwZWLqxRrs0XydKT6k5 xZnFwBbXqgy518jIwsou6YNZF/bGqsS8dZiM0NZDx8aIH7EzFR5vjn0lI7Pk 8lt3pbqxWX65b5k9ZGTPtXKoObIbO1X/3j6kg4z4/UMk3Uw/YRO73rqfLCIj cuFJR4G/PVis97WSwhwy8jV67PzJtRc7Qdq/sDeDjL4d4jobOtCLPQtIDvj7 koxsLyqHVjb3YSp98Q9r7pCRe3iUnl1uPxYaF5mopENG/mY3vjoOfsOOzJz9 mnGSjHq/brP5pDqI9Z7esF9QjYy+M1+Ilj0YxGQWQrJ+yZLRqcbBgWMi3zGG SVBxwVYyulu5nD18+QcW+F59fg8fGf0698X/9/sf2AGOZeUnnGQU+fLNcSe2 Icy/5Fad6x8SujZMd0rIH8L2bfEgSn0loeC9h/Rad/7E2pyO8LzqISGZLS/7 sv1/Yl4NUwYb6CSUeNHWdH/fT6zV3Znxs5mE9KKlGqeTRzA3it2X9BwSCou1 JeRjY1jNY7Pfu31JaLtyQuPYx0kscZL9S+5NEmJLPxCx23AKC9QvaFV1IqEr AjIdp9unMIx3Q4KpBQkF3bdyjidMY42RVSejNEno3lXJHsEeJpY+YS8tok5C TIEU5Cg/iz3Q2yKUrURCDaX/udncmsW0eVxGmw+S0IvV77dLOX9hbY92PV3h J6FT0bk0C4U5LGec6PdoAwnta3YOeHxvDovU9bHdwU5CAtKTw0vUOcyAu1NJ cb4D3br5WjLL6zdGjQjud/ncgRTNVfVaifPYp/DvUp+zOpC5kN7VwvL/sMrR J1udUjuQ/8/RT0dE/mCvdNRWF153oAXJ5GnNe3+wKxtiqFuedKBxMXeK2vkl 7EuY9i1d7w7kJjO2IrZhBfswMmvd49aB0qr6b074r2DJZ5J0rzt0oE2kMlu/ qRXMhmtx933zDnQk0tZitXcVG374rrkKOlC2xnHk2fYPI/w0yT9zvAOVesSV i+uuYVmn2eI/KnSgA1FjlQzSGubEae4ye6ADbRzcXJPuygZToTxbpPg60DqN x8dyQtjhd8gNq/jedvS3x0olZJwDyGbRR2IZ7ajb5gQHv/J6yDxY/O8ZuR05 xUyjvJD1cJE0nxzZ0I66Yp580hDjhJqtgd+CstuRspnuc+4bXHAvLdLG3r8d 0U9Lp3ZqcIO5d568rVc7Gsvh4X78hhsUTlPYrNza0dThfoGUv9wwNLYl7ZJN Owrkm5ocaOaBM/Kvv+udbUfX8/dZydvyAR96Z3dUuB29S3lZ7Dy0GX4+a1c4 srUdldNSjtsfFoAPdpPrZPjaEXtXHt+IswC4c8llSLC1ozvJwV9cfwoA41zF 0I6xNuRkFtXYObIFXg202P+rbEP69un7vLcJgWfBiNJKcRvS2uk9mmItBHr3 NnL+ed+GXNlqjCi5QrAibvD2V0obOt3etfGE9jawcu36ORzehpZ267uhkO1w YPm7A+lSG7JseHXkmupOKGMbsjpzvg3Jr3dZEHyzE7Q2DF9s1GtD38645imz i4CN0MiZyhNtKHZBaeAnVQQSjkxIZoi3IeeQJb2Au7tB4NrcSACTiPaTNIKE totCsvPvrwtjRCQidPpYlakoHPaY/+Txg4harx4MOhkrCnpBi60O3USkRfGj 82zfDw/jl7Mu1BLRhbagg18kxGCZtM5ROpyIVIzqfxp4SUAEg8P67T0iuhLS TapskIAdfesviQYQEcd28//UBQ6A0giXzvYbRMT7y6M4ueQAuLPxHlxnQkS5 ZOJOZc6DMKwkONq3l4g4f3Bxbvt5CLzVhb6ZChORQsLb7MEz0rBOa1sPdQsR lV/ZzMGZKw37jHYQCeuJaGHnqIWzjwxccd71rniiFXU7fxjdI3IYqEnijo8q WpHk5b3rsy7Kw8XtCae9i1qR+b7lRrNoeRh4KiBxNbcVcfA+K6xrk4eJu38H 5ZNbUetdxddVJ47CerueK70PW9F0ftzVt/IKoCr52PCgWSsyiPL20tdQgg/J 7Ie3GLUiiU/bNt6+rwSnd/jzrpxtRd961twfEJXgwsbrbRSNVkScNixXuHgM 3CYwrVsSrYiwa/WWcbAypBbMHSP8JiDXlrpS+ooqSB50FiqcJqDiiNL5BaPj kJ/ybe7VKAHxGTjy7H97HGqekQvd+glI0MHcOf6CGnz0yjok1ExAw7rhEZdr 1IFb5cqeay8ISOKqFfE7wuBZIW3FIIqAaKTFIz8OAGyX0vmsHEZAn5KnynY9 AZDYqRTPE0BA757b/8iQOwnYCv+WElsC+t7PXebFrQleqHE9+1EC+vw0WE/u ixbIn5SM5JYhoIMk2ta4nadgpiFy89YDBIQEg10KL54C5yYTEfGdBGRwUkKT vesU2BB+yp1mJyCbK2r0ix+1wZDEbfGI3oKSJy9ZPFg5A3wGNwefk1qQ5l5S 2MopHeggM64nEFqQ4QEfeZ0nOnCakujxvroFRcu3JFmJnQUN+uGwzrQWNCHw ypB0UReke84Xb/FqQWTfgNn4CX0Yu1ShLOLWghKLa9jOaBpAVq9InZhDC3o8 JGI2+coA9n8ealW80oL+mbwtOaB/DoS/+A6YabWgEE5FSkqtIXANvd6QsLUF 3V81lvAfNYaWa/+i0vla0JUk23zxXefhwbDd1vdcLajc7ceMtdF5+PtTZk/d cjM6aRly5ln1eZgfq1f4+qMZhc1fT/sTewGGZr5fFSttRn2Rd/8oOZvCxcwD vDl5zSj6/Y+7A+9NocPcuUouqxntMN08occ0hZKW2a0nXjcjOen5nFB/M7iX sEa8dLcZJRk8LcmKvQh7z+xReKLfjHKXCYaPFy7DixWbb4Knm1G+mHNO+mlz 4CzOjErAmtGZriu7M+PMYWqX7Oi7o81oZZyfcFP9CtT+UnvTtKMZaX5sjnN4 ZgGXky5z/RlqQoNmFtv4XayAfOFNafCXJlRygp9nut0KYOOgDWdPE5KzrbH5 Jm0Nkt6OtVs7mlBoh+N6rllrWDh7y+NwURM6EPGV+2OzDeBvZ5/tApvQ+fF0 mqWfHXTqUws6hZrQH5GT7k8vO4Cqd4RW86YmtPZOgTkW7wCZCZqfqjY2IYk4 sas/exwgcLz0b8ZqI9pj9yuj3dwRpMNfGQQMN6LiIEm643UnCGuynZAsa0QU +lCuVpILzI2LBO8uwPOpyoddRl3g6paPW7ZmN6LpkXA9fQVXULI5c/xvYiNa EtmWdLLDFX78lY7oCmlEYUWHD0lw3ADs+PyBeyaN6PSF79waCe6Qa5Nf7Xuu ETltK5VFs+6wLcLhnKtOI/KeS9zPK+EBU596fS6qNyKX1MdpGYEekOBT3ywr 3ohEmsWX5xQ84b/CMNu+uQaE7TO+1l3mBUWSO5MUXjSg58+9t+gK3QLGg+LL WY8bkDfP97p7Jrfg91ddIZGHDWiryehW85hboBwf8JjdvwGtt60R/yXkB3Ub Bm7TrjYg6/56oZ/7/IE4lnzx5qEGdKsnVnPbxQAY01bZ+kOsASWPEZl/UwKA J43aaba7AfWA4eekiQAwMGc7fWJzA1LZqHeR+8EdyIxpdhCeQOjC3XDO6upA qDXTFTW9j5CsKzG869xd+McfEK/ug9CpV2vsoxl34WRr7iZxR4RafQlhHct3 oVWZ7+8vA4RQTNHOULN7wNhB7YsWRoj9JFm4lec+jPWZxpAKP6BjeUpPd0Q+ gO1WNlynvtaj9z12OZt+PASi5A2SI70eFTuPe5SKhIE/8/azqJZ6dGfDzeIe kzDovxcj8im3Hg1WVWDpxDBIzWg94uxXj3hXQ+XMy8NBelz2UrRAPbLy+yiy L/cR9Bcf313GUY8O+Oi/kJ58BFEBZ773LtYhKeProS2ykcDktXEV+1KHiJza H94VR0LZkZi75Tl1qM9VjE+n6TGAz9K7fq06tD8uIKlt7QnManDdYFOuQxvV P/cq6D2FdE5BhQOH6lBJuWuK+sunsD5etu7m5jrUq3RnUfZwNHRUW9PYB2rR zgi0+aLCMzBdI/w56FuLhAX6RB/efg5OkS90fd7VoI9L4dI+erH4/hzZfyux Bq3jd1ey8IuF3KH7N25H16D5opabcZmxMKXh+TzYrwZtryw342V7CR5Mo74I nRq01N57YLXmJdw25XdOGq1GldVn39prxkPk3oiI1oPV6O9Np4+VMQkgQ7or 0r6rGl3e1NouSE4Asp9fHmlzNdKOU4zqWp8Im+gONNp/VWiy82LwPb9EiAk5 LdxPrEJ+3ANGybZv4M3YumymYxXKdIo/ZKmbDPklQUTh7Eq0b/VPNxxLg5o2 xZwdiZXoJm/6pv0WadD6dTxy+9NK1De8r/nM/TQY5LloKOSD+6rLkg0lDYSu HenefLISqdV7C312TYcAwW8/uHor0IkoDm6Zsgw463Py3/yGCvTrisKb3MAs MItc/PZ7uRzp6RMnm99ngV1qXuPcdDkifn6QJNufBXfIwg9nu8pRytm+0Gm1 d1Ag8Yt3KqUcZdhQZpT/vYNt3Wk7h1TKkYF2g51SbA78OMZxjO5YhsSWV7VU 2PLhq1zmUL5FGYohdRrwKOdD/6HTLyKNytCzBOsBGbd8+LgnnHlKpQxNtmsl W/TlA5GTN7eCqwxfX1X7fCsLIK976743b0tRntnvV9c1i+CWrxi341AJkg+/ VDwuUwJe7s2Vp3pK0F/7Fb1V/RJwd7Z3ECWVoAHC8ik1txJwuprV3FdSgmTm 0miq+SVgcVo62OBBCdptGF9+6mgpnNym8Pvo/hLkXbtD571mGXCXa35ZtSpG nvx8DU9DK8BLOK2/+3wxmhzT2e+RXwGf77B9LtAuRl3t9OKITxWQq4U+2UgX o4zCTSPWhyrBgKZBa1koQssTLkdz6ZUQPanSHBVVhP7ylUh0yFaDtLblheM+ hSj9jgbPhk11sMKzy2jSvBCpTUdkcmN1QKb36SdBIVquVeTXuVkHN6wvnWbn LUSL2p7ZXtQ6KAq4oNqeVoCyRzIio2PrQbn47F5zaj7iv0memzuEQGvvsQl/ 6Tyk/4gqN3eyEWY58x68FchDuYqtmIJlIyRNi+1iLL5Hz6v21Eb7NcKfOgED meb36NvgtS0ZBY1QaDGV/8XiPWoqMEYye5tg9+sMT60nuSgiw43Stq4ZFgW3 LvHOZqPVI5ZHtH+0QC43c0NK+Vs0lN3zXGS5DVSq1dXCk96i3qFFHheRdmhx inBzf/gWNRVF0hhq7fCNuJ8OZm/R+dEI8dk77SAUZpowOJ+JyALvN5uvtUPQ uhpZMaVMpB15/9UADwmMV0LPvy1JRzHGPUrXlTphpu+Y8iXrFHRnImuX+SgN 9Pj+E2kweoGKnRpLHXw+QW21R26Pnz9iHs28TRcfgGmO6qydV/ygYva3eMn8 IGRoR6+VUF5AGUdT/QrXMDy4HJW7dTwZ5ngYTb8LR0DsHTYRuScF4hQMQ/pr RqBpYfYQx4UU2P6zTrOeMAIcMWY5v2tSwEAXJdzsx9sdNpu6nEmFVZ3V2XCu UdBO672gL5wG5i8G2KItRuHsdldj/rp0EJpSz2pgGwMjtmf6zzmy4JLOjOZt 5XFo4iqmXtiTBVGeKwEPYRyU+RkmQipZ0PhiQ3Lk2XHYLSJkGe+SBZvK+OLu XhmHCcVXbkn0LDhj8nFVMHgcQh1Tn+SkvIPAnqTzw83jUEMpojaq50DgZ5US Qb0JONJNNwkxywFvZ64g1QsTkNY/16PtngPX/dWYZlcmIGJMaZCYngMTtmGE AJcJMFtXPdvJnQuy4X173SInYPZY45bPPblgpX7961TbBBxIopvMeedBduvI FfuTk1DVvxv78zgP7lmZTYnqTIKBiJPUv4w84POmCPacmwSf+H+r3B/zINlJ /KC8xSS0PJfJ2q+UDwGVdp4vfSfBLuzhH+P5fPB4wnv6cM4kJLsfTyr0KQQt wz6n17xToFAQGl4eVQhS+WFRkVumoHWK6lmbWQhRjFIX3x1TMO3scIb4sRCU K4KvqopPwd6Sdj93kSK4XKRv5K02BTfyFkXDA4pgbaFuK3KcAt40Y+8KtWKw f39bqb5+CiY+VQrX6xTDuwQXBfPmKWjj2/eh2bQYqMwG8Zm2KQj1n95Iv1kM aa3XZ9Z9nIJVo8jkyXS8XUAgrHcc7/9fc7sobwnsy/ebVRaaBqqliujj/hIQ SFxa7r82DQUvkgnPx0rATMOmMslpGqLaOF1fLZQAmnrz8/KNaTir9LH87eZS 4L5vm1N7axoaeD31G06VQusBDgPFR9NQXJN7a+F9KYjcuM3OzJuGGOG9ndaB ZfC4hNevmjkND1wS3kZElIH7yb1c7r+nwaNue3BxbBlcruax3/ffNBjYbJbj yC8Dyws8SR7/poErm+151pcyUFD29e/mmwF/lSHTaawcbN96heZJzYDVxeyB APYK2G78ZDzfcgYMsiXKM/grYMVg6QnBegbUl1OfkHdWAKn3ZWSv3QwIJ7/G 9ipUwOLr9cmzTjNA/xmZ2mhXAfEzvjnjPjOg7XvDfmNLBewoHlDkiJqBQ7EK Uy/DKiHMSfT074oZyO5m3Lr/ohIi5MobPatnQGqHN/uN5EoYekY5N1WLO6F0 u3ZFJWySsH/b3YA7VUlz7mcl+D4ZIN7uwJ2nHGd4ugom5fPDeL/MgGSL2skN 66vhaSbziNfaDGRx9nfMba6Gm8Lc1QHsTJDUuWP2dVc1aKbs6L3Lgbuj1qVc sRq8fIJ/3t3AhAM0jZfXrlVDzodNRZc2M0FiAJtATdVw+seRWOe9TBCf14r1 v18DrqqRDQpqTFAlS1Adn9bA5/vPtJfUmWCQycVzKbEGgt7EmtedYIKPacfd Y+U1cFzfUU9VkwktZedd58ZqYGP1SfqGs0xw8LXRcjOuhQL55GpuMyYEnNMK srhaC5Qxr9eJF5nw9IBElZ5LLYxEbbssfZkJFd2jhw+F1kLFz6ZQzIIJG5Td d45U1sIO0cl9WrZMyF4MmrXeVweNFr+9atyYUEexljGSrYML8cueu28ygZal 6YAdrwOivVjCHXcm/LnIObDbpA6Mk4b9jnoxQbcyitgXVgdbNlNH7vgxYcIv Mdlkpg60l4S8ou8zQXapykCnvh4Im985UmOYYDxdWHO5vR7MdYwGybFM8P2e JeXSjf8u7d58qe0lEz60x65/Ml0PkUPd+tXxTDBK8Khj7PkAoavteSGJTPBS l5K1Cv4A4k3tgvXpTIiT25fgHvkBHEv2TydmMKFGfPvG+3EfwO664H/+mUzg 4Fs/nFHwAV7rzmYfzmJC7MC3xPGvH+CwDE/f/RwmVAbF8/oCgq0d0Ry9hUwY 8Hx6O0wfgUhBk0FiERPYHB6Oxl9CYGZau2BZzISzht7NNe4I9lubePWXMOHz XqM7bKkI0p5U2RPKmfDPOmThNFsDFFlJvDKqZcJ+dvXrdJsG+JCv1mtEYELw mUvzFo4NMKaS1DKL+/Nj75CRGw1wvllK5lkrE15sz0tbCWiApBVu7w4iE9bL 7vl64GUDeBqJnTrcwYSRi2sXA9ob4F66zd0CChO03uwaWU9rAE4Jw1uqVCYk f1fxjf7UAI0Tr7c34r7k5hGTOdQAu1ODrSg0JrTd/06l/G2AwB9jl/sYTMjN az4rrtAIrxc9zEo/MYFr7ltPvmojEBXkDx3qYYKdyqqDKjRCiJwYPQn3rial h+cMGkH3xYd3Ib1MiOp52+jn0AhFTrRyzc9McF8XoUZOaASrmYd+j74wQemy gawvRxM4W6tTLg0x4ZXM74/PuJsAaboceof777/XQXmbm6B8eenDAu7Wt6OU oV1NkGf3NeXZMD7+3w88Lyg1AZX7qUP9T3y9P62ukLveBEGjy27zo0z4amtj re/aBLUPbsmpjjHh1LENGx09m4BPPuH0Hdx8A6bmyUFNoHSV7LWGO/nQ7Apf XBOoWE4srY0zobFFUnOitQnIevPLPybx5/tV5zhnZxPweyxm7p5iQqSrz4v9 XU1wZfBEtRnuC1ubhi5/a4LnMHmgFfew9dUw4n94/oelUuo0EzauxJAypZph YO2llhqTCYZH2S9aRzaD2Br2fNMcE+6sVl+yfNYMD1eLRVRwZxO9zM3jmuG2 V5WqNW4Oq2FLk/RmOBx8Q7kAd1Uk8ZpOTTMcKYgy0fmNr6fhJ55yE81wc3rb qMM8Xr/wjLfsbDMw9xfLPMIdGLDmc2ixGfxH6wTf4/4k4Okvvq4Fbhck0adx R54wvbtDpAXUxxx2uy8wYT5O5MmabgtYXnv8znYRr2/X9XTVqAUuXU4JD8Zt eDjq2ZJZCyRFqAsn4s5p/hvz2xZvfyRs2IXbanYwYfR2C3xPtt5/8j8mEHXf ZVNzWsB3R/9Gvj94fSGbXHJhC/QkJepK4BYbFM5rL2+BJlWbMxq4A29FFjY3 toD8kdRbrrjlM25UVPa1QKStaUsr7oRVxZYUbgK4eNaney4xYUsMf/JeAQI0 UpyywnFHHBr1S9pOgKtuv68n4fa7mCCTKE4AsQdvdrXhNi1ii4k7QYAejZe+ IstM2GzfafvEkwBLmNT9Utxhy1nqfP4EWO/E/oqA+9+ze9seBxOgr6vdtwf3 VL1ie8RjAqi5lEQs4+7YkSAf+pYAZ3SN92ArTAglOawF9BHgi/qBiFrcK7Yn +5a+ESDgyNTFDtxef3aW+o8Q4KDJzsVe3LYHOh1u/SaAFon2bgE3dleR4snf CnfOPh+VXWXCkgJbkpNmK4Rv6daLwe3R3ndrVKcVBr3lrFJwj1mXGjsYtkKo 1Jrue9yfohzW21u0gnVYd14T7rIRsqu1byuYe6y8Z+K+mfBa7WJOKwS3a/zS +suEmQ9/DzsUtoIbSUHEAPeNIdv9t8pbofpJpqQZbjdZ6Y1xja2gcg0mHXA7 f6jp7u5rhV3718k+wm3/o9/DjIcIs80FlDbcw1wn7a8LEEG3s86EhvuaTOYl 3+1EcDL829CD287HDXspRgRa7CGzEdw2XH95u9WI4HouxnXdPyZYSO99Z+pK BAmd2EfKuD8bPkiw9yRCSX9ZkQbuK94jT3z8iHDWlLtFC/flugKf2BAifOlW KTLEfdEQtD4mEuFN5EzmddwXvGy+mJCJ4BPwS+4ZbkZcC+0agwj9S3eVXuI+ XyvV4t1LhIaTWVIJuI3X/8qNGSbCu5y7gxm4z8Xd9+9aJcKKcWFMBe6zNemC JofbgErMkO/DvTX34LdhxTbgTA5J/IK7/3Ve7i21NthsGLz4HffN2xWaCTpt IGsSHzSBO1a1w/27bRsErlvpXsY9WPGL5B7XBhFl7z8Lr+H7b9atePakNvhY U2G1G7d33IpdTEYbqO8a7t6Hm+sW53JFURvYS5gmS+KWPbZT6l9HG0hVyL1R xH279GRo1FobZCrYuOvj1sogGO3laoftEjOqhrj5YvR2FfG1g6Dqnj/GuFO9 TEu6drbD4OT0pYu4W486DYootYPPrHSaDe5n+6ff5+HnrpTouF3XcJtv8fLD NNthy6WKqOu4p2bvbLIzbIea4RgTF9xbi6I1cpzaYbOMup837oEUoY3q7u0Q Io5yfXG/jX7dRfZth4/rZrv9cKu6Z7jMPmgH4/BOwUDcVkcqX6kktUN4XJx8 KGs+8r7OE+jtMCMhxxWDWyPWd+fxXvz7WPlVx+Km3OHD8r62Q9weM4c43L/1 1MJfTLZDjItM/mtWfvzlTmvODihezP2VwsrTZDEGbwfckOb2ScNtW9Vsd3pr B2wQzJ1Nxx0W/uu9zL4OaPTk7HuLm3rgHPZHtQM8f51zeo/bjn/YzhU6oE2F +SEP9/x8QPjX0x0wcMNdoAC3cEs2reVCBxgKXswsYuXt1l977tYB5/8UPS9n 5ZNrw6VTO+C3YujzD6z+wi7kJWV1gPO9Y8mIdf3NcZpAfgfcO0nPasB94sQO kf+qO2DHS468Jla+3yuvuasDupfHwltZ+WZuuvLnDiiqCvUl4n6fm7qQM9gB lK+B1m24abcp2LPpDkDdlVIduHcKS9MtN5AAslqed+LOW2tYoPKT4LBk8TUK bmz0ksgpIRIoudgoUFnjr3h47dB+EkipqrTSWHnT7wsLaiRwbuVr72Lln78S ib5JAhkJ/tN9uHu5ai7H+OD1ep58Ydk7sD8uPoAEvr+6vD/jznbcK5gaRgKt IurrftZ6wTJ5i5NJYLjVgvyFVb+UoFueSYJi7y8mX3HrHBoNr84lgeUl2z6W A4Wk1zdVkEBx+NHXb7h/ThSuMigk0Kzay/iO+54NXa3nIwmM/G/q/cAt8mnO v/8zCRx/LjSwbNh4bGFohARmKoTsIdxV8bXT8/9IsFNR0P4n7iht4tftcmQY pb18OoZbsmZs965jZOBUPTrNcqMcj8U+dTLIztrojeNeFDnXc1CHDBZjz9km cFv/YlBVrclwAFotJ3EvO8zzn7hOBunfz4pYjh3YZqDpSgbv6zs4pnC3ES+3 6fqRQYfdJZNlheSvDVeiybBzU2bvNG6yINua1UsyGOwlic3gdny0/8S1RDJ+ fqe7svzGx77a9R0ZnJseL7PMpT9RHIjIQK4+xDuLu++/hfRkJhnCHK6v/sL9 QVW1WmKRDPQ0GfU53Om3A6i5q2TYY/fTn2W3lX8rFdydQLLX/sXyv38bzKji nSDyWvzTb9w/QM/VTLoTQuKX+OZxE+9F3e+X7wQJpyEtlp+t21IweqITmsPY 81gW4xLZwHa5EwzbOr0XWOPTsdwTZtUJHtTsDJYnw5MV+a53wuuzZQyWy7jF bYS9OiHum/ORRdxn+GWr5aM6IWolZ4BlFyHM1bahE/TrpHb8Yd1Ps3v3R1s7 ofzJPXWWFeOa4m90dkJmtKo1y6s7dFpuf+4E8aiuTJaf7jLe82K+E/rYVqWW cHtZvlAUXumEnONvzrJ8KemjbjI7BWJvFDmyLLrP/FbuJgpELZzIZLlUzI7a JEXB3wdkdizjfnUt8+dZOQro+uYqsByYObJCOUYB74iCcyyfkXSV6teiwOxu owcs9x7yuf/bkgIRk1IjLK/KhylKPKfAkvWX1yu4x9YuXFOPp8CxbNV8lrsp +2IuJFHgi6ZWA8sFbtVz93IoYB1+/SfLttlTxV8aKeC1d7PsKms+/Kq/zxMp 8KR3TYNltTNhW/goFHiQmX2OZaHhfZ5qnylweUXyJsut+0zk4+cosNl34T3L pTP7bAr+UPDzCaGG5dT6qWjCPwp0vrnYzvJtizDmbx4qkNI//GRZNr66wFic Cryvmnb9xf18k+hhHlMqzDk6BbEc/GXKcv8VKugMlUWw7JJXHaVqQwW1+7QY lrX1TKYc3Kgwouufw/Liw7D3zaFUGL2ewmB5yNSk/3MkFdjsAwZYpomL8s49 o8L9e9IjLOc0VruIJlGhpZ9viWXLv1OHgsqp4DA/tfsf7rPkavPYWioUM0IO sHwsMezR+0YqrO1YOMzypuOi432dVJDSd8ZYbvQxyVYeocK6heyrLAsuWgr6 89LAjrEujuWb5uRLPptoUHnV/g3LbXXqbzy20GCnQm46y8EhIgecd9Dg7v3h ApbHBHqVr4jTIHFsXyvLp3x07lyUpAH7f4UklpN7KtCFQzS4WXWQzrJJ8suz +nI0IIxT+1n+IGNyRUOdBjUt/LMs74xuSlbFaCB8bGSeZZ+5o0NKmjSwtMhZ YvlQtYDbYR0aLB75tW6Ntd+coQTtNaFBmMszIZZdbHXT2Fzx+m9MlVgmtFT9 XL1Bg4nwNRWWRaWkpJc8aOAmmaDOcvcMV+mvWzSIepGixfLJwJaWHw9oYBw0 Z8RywjdF7m8P8fHbipmwvKCVca4/Ap+PDdoXWc7lfvCp6ykNciKvWrK8LR7G WhJokPyT6ciyx3KBbGMSDaSMy1xY7ri617M+lQb1em43WL4n8XepPIsG/wiV XixPFNfwviuhwWBwUyDLDeRjco86aCCaSn/6P78st27tpAFZQ/D5/2x17BkH nQbnanVjWEazSr+CemiQJhcXz/IHIaVSr2Ea9ASXpPzPWYpC0xM0yL/2MIPl elVFX8dfNHhQofCO5TpLBRXLfzQIPShW8D/PHH31aT0dDEYdilmuvXd0yZiX DhLmj8tYrsmUrz0tTAe/7f41LFdPHQE5BTrM/V1rYbkq+EhqjiodlLJsif+z wBF2CaCDavD79v9Z6XCzsAEdavRXOlmuvCz7kN+cDo+PLtJZrgiU0VnnQAd6 cHo3y+Wp0tz/edFBfTNXH8tlLYdIk3fpMH5BcoDlEj4po+7XdHjYWvSd5UYD De2pt3S4mbIyxDItyvg4RwkdNjvtGmF5kGx/ROQDHUaPCI6xzOS7LX60gw4z 5J/jLG96ksZv/YMO5SsHplmW5e/4L2qZDgx+JvN/641/F3lMmgFbuizmWX7H 75aqbcGA4eD4/1i2LdUYUicyYNvA8grL////C7Co2/WP5f8DBAwzCA== "]]}}, {{}, {{}, {}, {RGBColor[0, 0.2, 0.9], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2nl0zdcWB/BUNbVUvVBVJYtUVU3R1DzU3XiGmodimUqaYqmqxtDQUBVj ElSQGBNipuahZk4QETEkYggqiKHG5MZMSPLu3d+Tvddr/mjXZ6X95fc7Z599 hn0+Cfi568BCHh4evVz/cP+7Nv+cNUsWZmRO7VbFEdbM/3ZKRfW1TjPnDyup rttvb5tihdTTh955ve5RqjGBz/tv9K7jyAgutal1hro+P1DtftqkOPXNVYvj fbaoG+5IDDq4NNWUyzu5KTukqWPW4WdV+s5Su17u71fj1Y35BdWzM8dR3X6p JqzNo6u+d9s6+O06qJsUTVsR2EQ9t0zhHsV91fcqf1lkg3eq+bN+pKNxQncH 8Qero/7r/uIz4gdddpef8kDNzfe3mj836YxJ75UYX+f37xz8envV/Lh16oX8 o3auSWhXP+yMGbq8b9USD390tNz5JPfcGLW79UYMVrs+NsCrp/pr7pAzZuCS UmNiKgQ5lvAD1U9dT7tXWd22WKHq00qrY8t+kV7JU/3c1RuHn6WY2pfne3ww OMTRHh0sXs4vqH75jbuH1R1db9dwR4rxeL10Q4na0x0rA909os4ZP2T/qLnq zhww6tX8wSnm+y7d9vcvG+V44+7eAHVXd3d0Ua91N18zdZ77c79Ud+MATDHv hvc+9W3zWMef3IBqD/5Rb/DuPaDxtWRxTw7YZOO7K+Tz4Iy1Dnc0bYtRuzrH FZLqvhzQ6iL8wGTTaXd26X13tjk4/MuqOZxenRZz91xS8+fuVg/gAXHaZJ4c 7Hgxbb/Di19Q7WpcV8SrB/OAUbtHb3Cp0+Z49aiE0d8ddcQlLXP16Ckxhrua h882NYfj7FMmb+qxcp5nkx3cvYFqbr5Oav7cL9T8esXV/LjMkyat59xPlk9J c5zEj3gMD1h1Jc8Q1xBVc7oYctJ0M8EejVtkOHj4tVFzOFdRc3gUUU/gAX/C 1KrRfrqX7z1HjW0xrhGkvnj6hSvC1ZM5Iaj9uIPVV/gFT5j8C+m3NzZ6bPOt GvlVjXyaJEb+TDJvDb87ybNBjs2XauRHNfKhGvkvyYx44x1eaW8hQr5TI78d FyOfqZG/1MhXx82PzsvNq84pSshPauQjdQznH3UbDujjpkLKvpxCe0oS8kui GPlEjfyhRr5INJHvPDj2Qd2yhPygRj5QY/yrMd7VPHydx0zMVY/ab+pXJAw3 NQ+PTWoO55lqDr+hx8yyQU1Of1i1KnG4tFNz91ZXc3cUVXPz3UswW5+sfvNP sy8Jn6vm11uj5sdNUw/iH7U7WJa1TDCFfV49y5tUn9yjLb2SeggnBLXrY10B fVTM0+/ho6b4V3M3jD9HxNG3TM3TQ4ia062/mtMfHTWOiUXm1x7UkjhdlVdz esmNF3M6SFfz8N2v5uG2ON6ca3S+Z6Oo9sTDI1jN4dxbzeHXUM3hUibeRLVv 0T/qeVeq5u7eF0fE3B1pam6+nWr+3KgjZt7SBQ2q5fckfr1Ran7cN2qsr9RY T6mxfjps0tqP+uz5t/6E6VSN9ZEa6yE11j+HTUBK5IyS7QYS1jtqrG/UWM+o sX45ZGqm1LmwZMqPhPSixvpEjfWIGusPNQ+P1ofMRxuH905aP5w4nCurOfw8 1Rwut+PE6N44U6V/sV83Tw8i7o4V6k5IgGL+3AA1v16zOHM/uuyJoMhxxI/z Ueflu3+MGPO3GvO1GvOzMWn56d+vzQ8hzMcHxZh/1V72gQXG/HrQ/Na8QoPf p04lzKcHxJg/1Zgv1ZgfD5hPF8at83h7BmE+3C/G/KfGfKfG/KbGfLbPHBm9 sOrqjrMJ85ca85U6lCcA9XUecHtNlwlFP4ttGkUNeP5RR2CCEN/lAaluyg24 x6RWePJtWedCWsDzhzqbB6z6a54f1LE8H+wWv+QBvdv4DWsU3HrkUuqMDhGv 5fyu9uB8vkvck/P3LpO+reV/kp4st/lajfysRj7eKUb+3WladRo2f9n21Tbf qpFf1Ri+f4mRP9XIl3+ZftFPO73yXG/z4w4xuleN/KdGvtthltbrmjz59Wab 37aLJ/LrqS9z/lLX4ny13fTZXnF8i+RtFM75aZv4BucjdSPOP+o5CGjxfc4v W83LB5NyKO8vas75RL2I84f6MecLdVvOD1tMUIU7vn0i9tByHiDqHB7/6q5I mOJuPBw3mwELL/wwIvwAFebxrEa4bBJjvKrxORvFGI8bjfm9TdNaL+Ps+Nsg xnhTY3ytF2M8rTczi+wYGRhwxI6fP8UYL2qMj3VijId1ZuxHCSa6cIKN/7Vi xLsa8b1GXITjWb2b43e1mb3iynsxVxNpMMerugzH5ypxIsfjSvEYjr+VZmXF jhcmOU9QFY63FeKLHF/qUI6n5eIGHD/LzUCfVism102muxwvy8QLOD7UX3M8 xIpfcv+rO2NBbOolX3v7RY8ztIX7d4nYCxs0cSD3X7Q4BQsME/rb0heR1c6S Hz9ukTgCC15xNrf/AnFnbMDMgNndmwZ8cJ62cPvOE3thASEO5PaLFKdwe80V +3H7zDGXGiZm7C+eRhHYYImz+fsjxLH8vX+I/fn7Zpjzsx3OlR9fIh/+nnDx df5zoeI4ft+p4gn8fpNN7yLDDx73+5ua8vtMFHvwAnqCeAL/vXH6+9/dzx+j v+fnjTKzjs88s7Bzuv3/A9X83w/+1+/9/+XOJiaq1Otuv1wjD/sjxu/p/+2v xvNpZ+qkEhGnrhf8fbF9P/093l9/j+/71/8/gfald/R4/1pGQfuIbfuJbfuK 8fxQWtUq/t0GmTeoKfpHjL83QxyH/hXj70dQoRbfT2z4/CbFIj7EeJ854uuI LzHeL1Lsg/ikB22nenZ/ecu+7zyxP+JbjPdfII7F+KA58VdLP350237PIvF1 jC8xvi9a7IPxSb7lykWvyPjHfu8SsT/GtxjfHyvujPwgRnssI8/oFlm+CXco G/lFjPZZLo5AfhKjvVZQ5ftDWk5fcpf8kN/EaL+V4hTkRzHacxXduT5vbNYP 9ygQ+VWM9lV7IT+L0d7qLcjvdHnPZu/4z+/b9ld3xvwgRn+oszG/UAt6nLo1 7X7B/CO285PYzl9iO79RTY8bHSN/fVAw/4nt/Ci286fYzq9iO//S7sbD0sa+ /9CutzeLsZxW47xuixjnf1so47fEPWvmPiScJ6pxPqnGeedWcTTWHxRRPT5t QrFMaoH1ifgh1i/iSHyQ+Cusf8S3sD6izOMB8+eOyaQZWD+J62B9Jb6C9Zd4 MtZnFPBzaFDYxUyqgfWb+BzWd+JxWP+JK2F9SFVGvjWpom8WncT6UTwK60ux N9af4nisT8VDsX6l0kuDH9UcnUWlsL4V78f6VzwA62NxMayfyat1gGfYriza gfW1uC/W3+LCWJ+LN2D9Tquajw/+jzOLuiFgxG+w/hevxP5A3B77B/FT7C+o 2i2PsbHlnRSN/Ye4BfYn4ofYv4gjsb+h1Ss39f6wtZO+wv5HfAv7I/EM7J/E dbC/ohehx/IdPzjpCvZf4snYn4lrYP8mPocNgHgc9n8UPKB3iZtTnFQJ+0Px SewfxaOwvxR7Y//pasfEq3tinAX7U7Hdv4rt/lZs97/ULCLp2dCtzoL9sdju n8V2fy2222UxZvM4WvRJnx7zDjnteFfjPF+N8a9GvSCOktuF+cWddtp8oEY9 Qo38oEa945AY+eIQTSnfofTAS05CPUWN/KHOxvmIGPnkEIX5XA3PznDSApyv iJFf1E1xPiNGvjlM796OuGTuOukuznfEyD/qCGwwxchH6gY4X6Kb762t8GmW 0+Yn9XWcT4mRr9ShON+iiD5zgvo9dtr8pfbD+ZgY+Ux9EedrVKNJaM31z5w2 v6kn4HxOjHynroLzPTHyXzzFD6xarOFLJ6XgAEmMfKgeg/NFMfJjPGXWGzH+ ixwn+eB8Uox8qU7E+aYY+fMoNd+aE7/ptZMCcT4qRj5Vl8H5qhj5NUEch/NZ 6jDsrMeZN06bb9WDcb4rRv5Ve+F8mMYk/1Rjfa7T5mP1bpwvi+35s9ieT1PP nw697JDnLDi/FtvzbbE9/xbb83GxPT+nWRc7zkpw2Z6vi+35u9iez4vt+T35 B+9pWCHfWXC+L7bn/2JbHxDb+gGVHz0+u7/Ltr4gRr3zuBj1UfVj1C/ErVDf oFu+F1L/cHkR6h/iLNRHxM1RPxHPQ32FIot5h29x+T7qL2IH6jPiOajfiP9B fYeySjdYnOhyI9R/xH/gAFd8A/UjcT3Ul8ThqD9RyNiQtZdcvor6lLgW6lfi qahviS+j/kV0YOTq2y7XRH1MPBH1M/EF1NfE1VB/o3V3/N/Jcnk86nPiVNTv xJVR3xMHo/4nPo36IAV8VDL1icsVUT8UB6G+KE5C/VFcHvVJqlSoaPILl0eg filOQH1TXBb1T/Ew1EepV59r03JcPoz6qbg06qviIai/ig+iPisuifotFc+9 1/+Ny4NQ3xXvRf1XXBwDThyA+jGFRbaOyXV5J+rL4qKoP4v7oT4t3ob6NY3o Xmx4nsueqG+Le6P+Ld6E+rj4LdTPxetRX6eoHm1z3e6O+rs4H/V58TrU78Xf oL5PY7cG9cp3ORf1f/Ea3A8Qd8H9AfFr3C+gGZlRUW6vwv0DcSfcTxC/wv0F 8QrcbxB3QMGGLpQJ2e/2C9yPEC/D/QlxO9yvED/D/QtaGB5y3u2luJ8hboP7 G+InuN8hjsH9Dzr6dPhtt1vjfoj4Ee6PiBfjfom4Je6fiO39FLr9yzSn2/b+ itjebxHb+y9iez+G4mpeeea2vT8jtvdrxPb+jdjez6G0u6deuW3v74jt/R6x vf8jtveDxPb+EDkqO964be8Xie39I7G9nyS295co6eMDuW7b+01ie/9JbO9H ie39KQqrvzrPbXu/SmzvX4n/B0Ga0E8= "]]}}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->450, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{-0.299999987755102, 0.299999987755102}, {0, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.429257883160728*^9, 3.52238613147052*^9, 3.65732975509965*^9}, Background->RGBColor[ 0.9366445410849165, 0.9366445410849165, 0.9366445410849165], CellLabel->"Out[27]="] }, Open ]], Cell["G21\:306f\:ff0c\:53ce\:675f\:5148\:306e\:6b63\:898f\:5206\:5e03\:3068\ \:306e\:9593\:306b\:306f\:ff0c\:304b\:306a\:308a\:306e\:305a\:308c\:304c\:3042\ \:308b\:3002", "Text", CellChangeTimes->{{3.429258203722184*^9, 3.429258238840877*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"%%", ",", "G21"}], "]"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[28]:="], Cell[BoxData[ GraphicsBox[{{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwt23k8VN//B3ASZStFJW1CEooQQvcdKVlCoRLZkr3skdBCSEpFFNklZN/X jm0MZswmISpFdkbCJ0v53fk+fn/N4/k4r/s+Z84998w9f8x+O/cL19exsbHt 5GBjY33uMueXVFTsQoVP6TszqsQxMhSfl5PvQu9Nmvm8JCWwQEmzIJnDXSho eSYpJk4C+/r7zUfxg10o9bJWzlrQASz1qWyI0K4u5Hx+/M2gy0HM2JdWICDc hWpPo53ZUwcxdkufz3zbutC2PKMf0p5SmN2huqOcm7uQfPjOmsQHhzCJFv3B hXVdyEngsQm5TQb7mMvknVtjoEq6kvAmO1ns4fMYlZlVBrK48vjFw3+y2IhV /9ORRQb6xaFXd1nzCJa95HKiZ4KB8tpStmj4y2OycpEJVQwGyjqp8CrkgSI2 sO1IaxmVgeJ8ZPn3TCtiT1bpv4rIDMQsenV1ylwJm2nfqZvTykAeTGvtK2rH sCL7nP9e1zBQaCIxF+1QwWz0z4nHVTKQYawKm8lLFWyLwi/DF2UMdMtz6HnQ NlXMa001K7KAgYTcTxZ37jmOKSW0md5JZ6CIXWOuX4zUseF7bvf8UhiI/YHy rbwhdeylo0Ce9xsG2t+9ohIaoIEtKl3mcItjICvt4tnHxSewKuposWUkAz0/ 9qjJWvwkpsG5YTPmxUD3K9+dc990CjsblmC4dJOB2opF0rSCTmEmG448LXNl IO6g2w7hM6cwF24zfpnrDKS9I2cqoVcbe8WfwSt8mYHWEVT3eJLPYJlPlfW7 TBmorC7VysxYByvc3BH59DwDva73pu3p0cFat/zi5tRnoIt8FbYJ02ex39tg 49wJBlI852q26aQ+9i+OoZOvxkDXt6jwfx3Qx3iEHcKdVBhI4wX9h3CQASYq 8oTrmzwD1T89v1Wk7RxmuLd/PVmcgY4T/SMVTxtjuZJ+7FncDLT7qhJTwdkE q3jHo2nLxUByR+fuVfSYYI1Syfd2czBQskbgYOJZU6xXmrD2YpWOjrY370BH zTAuOcF/d5l0dMwz5XK/2CVsa1HWCfUpOuJT54/99vYStueoWtDiGB2dYKek lchcxpQUbVfdftCRyPF3nOwnzTFblcJl82466mrLjZmLssDcqrTUtjHoSOCU 78Z9UpaY//FPt2kUOgop1Fx+3WqJPVX/++dMGx15jW+51MhvhdWB/n+KtXS0 NWtbr/M1G0z47Ohv/jS8vxcUwfiAa5jog/IstmS8v+fH+/q+XcMO1oWY/06g oxpjF3ERHXtMWV4U9cbSkaiB5M6aXdcxE2HzyIwIOpL7nXnp+VcH7MqFgyfi HtIRj2DFYK+pI2YXtcCMeEBHH7NtzTw6HTEPthdmNwPp6LPIzd5aghP2dKxD 9LgHHVkSFrN5PrpgcWKvu2Ru0BGxxvDlNitXLMnSMWyvCx0pLEhEUydcsTwa xxSHPR39ZLx3CuW7gbVXaVRSLtHRNbN6QWcvd2z9o4Jz9kBHx9WlNMxcvDC+ 5kC2Sxp0JLNrve3uNi9M8K9eqe5xOirvc5MoPuiNiXmOCssp0hH6+WXw+pQ3 Buaiw0uSdGT0wtJgIcoXOxMzEzcljufpe+7sX/bFDDvrdL+J0pHrbKeQvfMt zFLTvLBFhI5uVDQLmBr6YQGHXgREb6IjpZyxlr8Kt7EH12wOP+Clo78/cquW i29jj5KODPpspKOKd6bdtooB2KstpNNX1tFR4CWj1cQTd7CKJY4tBxZpqD48 1oPbMwj71e77ruYLDU1SSqOvyd3HhDbW5td9pqFOzYXbdiH3MdUzbGUfemgo zq24cLr3PhbcFNnQRKch5hxVkRDxAOOpTenrINDQvm1O37VXQ7DDS8PfyE00 NL9vPNHzaihmrCI9QkE0tKdZ+pRDQygWV1o2x6imoQkqNYH4+CEmltfO259P Q9zJcwsmx8Ox0xObtn7JpaF798+VZueEY05SpsLf3tHQcHhAOPfuCKwg86vE UBoNSYGdsdCGR5ha0u8Tky9paB2PlKT5f5HYhad7PFaCaMhc0bn3rm405ku2 u/U3gIaGxCnUE9+isVc82YFrfjS0DN46PerPsK9hCo84vGhobfM3ebfeZ5jL XZ10Xgca+p4oqflR7AX2pD4qm/8aDV0NLtSWuf0CK1qhF2y2oSFxsS/Gm+gv sEU/y1rBKzQ0bi/SH/MwBnvg4flxlyENRTNa/e3WvcTeFlR83qNPQ041To1f r7/E2qZWBvedpaHN/KrNoqSX2CbnsGlxLRpy5t8rtC0xDkuwTeSSVaYhhxYC Z+r5V1jJBYKqxl4asqRuPVQt+gaTl1m+8FeEhvreptOaC99gBRxyNz7soKGa eJvbkZpJWG7Zq7STW2jofRvl3N0byVj6djee0+tp6PGWg7sxn1RMlJkqwcVO Q6bHthveIKZiGtHvg56uUFFS8+i6o7vTMMVfwSMvZqiocx9bSExHGiZWfqAq 8SMVXZjd9DdBPQPb6xA9tYdCRSKU5Een3mRgIjuWRFOJVPx5ixZD/zKwrbfJ jzJrqChsydXyfHsmxn7C2yI/lYqkBTiu9fhmYYMtDf8+uFGRe5V7bLxSLjbg K62o6UBFxaE3y2oqcrFeyVjHZmsqOiIs80ZP/T1Gi3CkES9QkZ7MkMwX/TwM GWxKp6lS0Up6F2VTVAFW89fv0wUFKuIcU3LtFSvEKgq+83TLUFHJiH6OW10h ViBQ7t23l4qa1EkjgoFFWPJHi9M/1lNRnjedP6+9GEt4SLht/4+Cbiw8ujon WoLFKcsVjPxHQZTso4ldt0uwp6/W7ZicoKDUJ0b9IfKlWLBlzthvGgXZTdaJ 3igpw64OLz7mTKKg5VAtbsvNVZjxhk9Zi3EUZEYabhQNrMK0pcsbR59RUASn yHjdRBUm6+H9X3soBQ2nqGxN6KzGVleYdk/dKMho/3WTltxabHYvNeiuAwXt ng1UEz1Yhw1rFrzysKEgqSu3yTFv6zBSuBvlgikFPdzlfmM4ux5LEBw/vkOD gvTU77hLdCDsqXKb6UZlCprvzCCJyDZgD8zfuS/JUVC/nqaHiU8D5pxy/W2/ OAXpPrxv6bSxEVOV+SGQyktBBja5y3nQhH3S6h+V6u9EjOi8jdrMFqzjes06 ke5OpLdd+Wa9PgH7EPF6Dy+1E10rOFten0PA3lIumUw3daJRW8snri6tmM+V jx+KczvRotc7oSNrRMwpqLQvPbMT0VUfxEc7tWGWqS/mY5I70X2kW/G+qw07 NWIsfetFJzpZ0RAkV9iObfXqfKkW0InO6rPNyQaSMK6XeUUyPp1oFVOxlZ4n YcuVj0m7b3aiwfXaz3bfJGPf/+qyr9l2IoLIbqN/jp1Y0aNWt2bdTuQm+Tkj 3oeKGaWhUwY7O5F2oKub9iod+/MnKKx2ayfyYcdGnYwZWLqxRrs0XydKT6k5 xZnFwBbXqgy518jIwsou6YNZF/bGqsS8dZiM0NZDx8aIH7EzFR5vjn0lI7Pk 8lt3pbqxWX65b5k9ZGTPtXKoObIbO1X/3j6kg4z4/UMk3Uw/YRO73rqfLCIj cuFJR4G/PVis97WSwhwy8jV67PzJtRc7Qdq/sDeDjL4d4jobOtCLPQtIDvj7 koxsLyqHVjb3YSp98Q9r7pCRe3iUnl1uPxYaF5mopENG/mY3vjoOfsOOzJz9 mnGSjHq/brP5pDqI9Z7esF9QjYy+M1+Ilj0YxGQWQrJ+yZLRqcbBgWMi3zGG SVBxwVYyulu5nD18+QcW+F59fg8fGf0698X/9/sf2AGOZeUnnGQU+fLNcSe2 Icy/5Fad6x8SujZMd0rIH8L2bfEgSn0loeC9h/Rad/7E2pyO8LzqISGZLS/7 sv1/Yl4NUwYb6CSUeNHWdH/fT6zV3Znxs5mE9KKlGqeTRzA3it2X9BwSCou1 JeRjY1jNY7Pfu31JaLtyQuPYx0kscZL9S+5NEmJLPxCx23AKC9QvaFV1IqEr AjIdp9unMIx3Q4KpBQkF3bdyjidMY42RVSejNEno3lXJHsEeJpY+YS8tok5C TIEU5Cg/iz3Q2yKUrURCDaX/udncmsW0eVxGmw+S0IvV77dLOX9hbY92PV3h J6FT0bk0C4U5LGec6PdoAwnta3YOeHxvDovU9bHdwU5CAtKTw0vUOcyAu1NJ cb4D3br5WjLL6zdGjQjud/ncgRTNVfVaifPYp/DvUp+zOpC5kN7VwvL/sMrR J1udUjuQ/8/RT0dE/mCvdNRWF153oAXJ5GnNe3+wKxtiqFuedKBxMXeK2vkl 7EuY9i1d7w7kJjO2IrZhBfswMmvd49aB0qr6b074r2DJZ5J0rzt0oE2kMlu/ qRXMhmtx933zDnQk0tZitXcVG374rrkKOlC2xnHk2fYPI/w0yT9zvAOVesSV i+uuYVmn2eI/KnSgA1FjlQzSGubEae4ye6ADbRzcXJPuygZToTxbpPg60DqN x8dyQtjhd8gNq/jedvS3x0olZJwDyGbRR2IZ7ajb5gQHv/J6yDxY/O8ZuR05 xUyjvJD1cJE0nxzZ0I66Yp580hDjhJqtgd+CstuRspnuc+4bXHAvLdLG3r8d 0U9Lp3ZqcIO5d568rVc7Gsvh4X78hhsUTlPYrNza0dThfoGUv9wwNLYl7ZJN Owrkm5ocaOaBM/Kvv+udbUfX8/dZydvyAR96Z3dUuB29S3lZ7Dy0GX4+a1c4 srUdldNSjtsfFoAPdpPrZPjaEXtXHt+IswC4c8llSLC1ozvJwV9cfwoA41zF 0I6xNuRkFtXYObIFXg202P+rbEP69un7vLcJgWfBiNJKcRvS2uk9mmItBHr3 NnL+ed+GXNlqjCi5QrAibvD2V0obOt3etfGE9jawcu36ORzehpZ267uhkO1w YPm7A+lSG7JseHXkmupOKGMbsjpzvg3Jr3dZEHyzE7Q2DF9s1GtD38645imz i4CN0MiZyhNtKHZBaeAnVQQSjkxIZoi3IeeQJb2Au7tB4NrcSACTiPaTNIKE totCsvPvrwtjRCQidPpYlakoHPaY/+Txg4harx4MOhkrCnpBi60O3USkRfGj 82zfDw/jl7Mu1BLRhbagg18kxGCZtM5ROpyIVIzqfxp4SUAEg8P67T0iuhLS TapskIAdfesviQYQEcd28//UBQ6A0giXzvYbRMT7y6M4ueQAuLPxHlxnQkS5 ZOJOZc6DMKwkONq3l4g4f3Bxbvt5CLzVhb6ZChORQsLb7MEz0rBOa1sPdQsR lV/ZzMGZKw37jHYQCeuJaGHnqIWzjwxccd71rniiFXU7fxjdI3IYqEnijo8q WpHk5b3rsy7Kw8XtCae9i1qR+b7lRrNoeRh4KiBxNbcVcfA+K6xrk4eJu38H 5ZNbUetdxddVJ47CerueK70PW9F0ftzVt/IKoCr52PCgWSsyiPL20tdQgg/J 7Ie3GLUiiU/bNt6+rwSnd/jzrpxtRd961twfEJXgwsbrbRSNVkScNixXuHgM 3CYwrVsSrYiwa/WWcbAypBbMHSP8JiDXlrpS+ooqSB50FiqcJqDiiNL5BaPj kJ/ybe7VKAHxGTjy7H97HGqekQvd+glI0MHcOf6CGnz0yjok1ExAw7rhEZdr 1IFb5cqeay8ISOKqFfE7wuBZIW3FIIqAaKTFIz8OAGyX0vmsHEZAn5KnynY9 AZDYqRTPE0BA757b/8iQOwnYCv+WElsC+t7PXebFrQleqHE9+1EC+vw0WE/u ixbIn5SM5JYhoIMk2ta4nadgpiFy89YDBIQEg10KL54C5yYTEfGdBGRwUkKT vesU2BB+yp1mJyCbK2r0ix+1wZDEbfGI3oKSJy9ZPFg5A3wGNwefk1qQ5l5S 2MopHeggM64nEFqQ4QEfeZ0nOnCakujxvroFRcu3JFmJnQUN+uGwzrQWNCHw ypB0UReke84Xb/FqQWTfgNn4CX0Yu1ShLOLWghKLa9jOaBpAVq9InZhDC3o8 JGI2+coA9n8ealW80oL+mbwtOaB/DoS/+A6YabWgEE5FSkqtIXANvd6QsLUF 3V81lvAfNYaWa/+i0vla0JUk23zxXefhwbDd1vdcLajc7ceMtdF5+PtTZk/d cjM6aRly5ln1eZgfq1f4+qMZhc1fT/sTewGGZr5fFSttRn2Rd/8oOZvCxcwD vDl5zSj6/Y+7A+9NocPcuUouqxntMN08occ0hZKW2a0nXjcjOen5nFB/M7iX sEa8dLcZJRk8LcmKvQh7z+xReKLfjHKXCYaPFy7DixWbb4Knm1G+mHNO+mlz 4CzOjErAmtGZriu7M+PMYWqX7Oi7o81oZZyfcFP9CtT+UnvTtKMZaX5sjnN4 ZgGXky5z/RlqQoNmFtv4XayAfOFNafCXJlRygp9nut0KYOOgDWdPE5KzrbH5 Jm0Nkt6OtVs7mlBoh+N6rllrWDh7y+NwURM6EPGV+2OzDeBvZ5/tApvQ+fF0 mqWfHXTqUws6hZrQH5GT7k8vO4Cqd4RW86YmtPZOgTkW7wCZCZqfqjY2IYk4 sas/exwgcLz0b8ZqI9pj9yuj3dwRpMNfGQQMN6LiIEm643UnCGuynZAsa0QU +lCuVpILzI2LBO8uwPOpyoddRl3g6paPW7ZmN6LpkXA9fQVXULI5c/xvYiNa EtmWdLLDFX78lY7oCmlEYUWHD0lw3ADs+PyBeyaN6PSF79waCe6Qa5Nf7Xuu ETltK5VFs+6wLcLhnKtOI/KeS9zPK+EBU596fS6qNyKX1MdpGYEekOBT3ywr 3ohEmsWX5xQ84b/CMNu+uQaE7TO+1l3mBUWSO5MUXjSg58+9t+gK3QLGg+LL WY8bkDfP97p7Jrfg91ddIZGHDWiryehW85hboBwf8JjdvwGtt60R/yXkB3Ub Bm7TrjYg6/56oZ/7/IE4lnzx5qEGdKsnVnPbxQAY01bZ+kOsASWPEZl/UwKA J43aaba7AfWA4eekiQAwMGc7fWJzA1LZqHeR+8EdyIxpdhCeQOjC3XDO6upA qDXTFTW9j5CsKzG869xd+McfEK/ug9CpV2vsoxl34WRr7iZxR4RafQlhHct3 oVWZ7+8vA4RQTNHOULN7wNhB7YsWRoj9JFm4lec+jPWZxpAKP6BjeUpPd0Q+ gO1WNlynvtaj9z12OZt+PASi5A2SI70eFTuPe5SKhIE/8/azqJZ6dGfDzeIe kzDovxcj8im3Hg1WVWDpxDBIzWg94uxXj3hXQ+XMy8NBelz2UrRAPbLy+yiy L/cR9Bcf313GUY8O+Oi/kJ58BFEBZ773LtYhKeProS2ykcDktXEV+1KHiJza H94VR0LZkZi75Tl1qM9VjE+n6TGAz9K7fq06tD8uIKlt7QnManDdYFOuQxvV P/cq6D2FdE5BhQOH6lBJuWuK+sunsD5etu7m5jrUq3RnUfZwNHRUW9PYB2rR zgi0+aLCMzBdI/w56FuLhAX6RB/efg5OkS90fd7VoI9L4dI+erH4/hzZfyux Bq3jd1ey8IuF3KH7N25H16D5opabcZmxMKXh+TzYrwZtryw342V7CR5Mo74I nRq01N57YLXmJdw25XdOGq1GldVn39prxkPk3oiI1oPV6O9Np4+VMQkgQ7or 0r6rGl3e1NouSE4Asp9fHmlzNdKOU4zqWp8Im+gONNp/VWiy82LwPb9EiAk5 LdxPrEJ+3ANGybZv4M3YumymYxXKdIo/ZKmbDPklQUTh7Eq0b/VPNxxLg5o2 xZwdiZXoJm/6pv0WadD6dTxy+9NK1De8r/nM/TQY5LloKOSD+6rLkg0lDYSu HenefLISqdV7C312TYcAwW8/uHor0IkoDm6Zsgw463Py3/yGCvTrisKb3MAs MItc/PZ7uRzp6RMnm99ngV1qXuPcdDkifn6QJNufBXfIwg9nu8pRytm+0Gm1 d1Ag8Yt3KqUcZdhQZpT/vYNt3Wk7h1TKkYF2g51SbA78OMZxjO5YhsSWV7VU 2PLhq1zmUL5FGYohdRrwKOdD/6HTLyKNytCzBOsBGbd8+LgnnHlKpQxNtmsl W/TlA5GTN7eCqwxfX1X7fCsLIK976743b0tRntnvV9c1i+CWrxi341AJkg+/ VDwuUwJe7s2Vp3pK0F/7Fb1V/RJwd7Z3ECWVoAHC8ik1txJwuprV3FdSgmTm 0miq+SVgcVo62OBBCdptGF9+6mgpnNym8Pvo/hLkXbtD571mGXCXa35ZtSpG nvx8DU9DK8BLOK2/+3wxmhzT2e+RXwGf77B9LtAuRl3t9OKITxWQq4U+2UgX o4zCTSPWhyrBgKZBa1koQssTLkdz6ZUQPanSHBVVhP7ylUh0yFaDtLblheM+ hSj9jgbPhk11sMKzy2jSvBCpTUdkcmN1QKb36SdBIVquVeTXuVkHN6wvnWbn LUSL2p7ZXtQ6KAq4oNqeVoCyRzIio2PrQbn47F5zaj7iv0memzuEQGvvsQl/ 6Tyk/4gqN3eyEWY58x68FchDuYqtmIJlIyRNi+1iLL5Hz6v21Eb7NcKfOgED meb36NvgtS0ZBY1QaDGV/8XiPWoqMEYye5tg9+sMT60nuSgiw43Stq4ZFgW3 LvHOZqPVI5ZHtH+0QC43c0NK+Vs0lN3zXGS5DVSq1dXCk96i3qFFHheRdmhx inBzf/gWNRVF0hhq7fCNuJ8OZm/R+dEI8dk77SAUZpowOJ+JyALvN5uvtUPQ uhpZMaVMpB15/9UADwmMV0LPvy1JRzHGPUrXlTphpu+Y8iXrFHRnImuX+SgN 9Pj+E2kweoGKnRpLHXw+QW21R26Pnz9iHs28TRcfgGmO6qydV/ygYva3eMn8 IGRoR6+VUF5AGUdT/QrXMDy4HJW7dTwZ5ngYTb8LR0DsHTYRuScF4hQMQ/pr RqBpYfYQx4UU2P6zTrOeMAIcMWY5v2tSwEAXJdzsx9sdNpu6nEmFVZ3V2XCu UdBO672gL5wG5i8G2KItRuHsdldj/rp0EJpSz2pgGwMjtmf6zzmy4JLOjOZt 5XFo4iqmXtiTBVGeKwEPYRyU+RkmQipZ0PhiQ3Lk2XHYLSJkGe+SBZvK+OLu XhmHCcVXbkn0LDhj8nFVMHgcQh1Tn+SkvIPAnqTzw83jUEMpojaq50DgZ5US Qb0JONJNNwkxywFvZ64g1QsTkNY/16PtngPX/dWYZlcmIGJMaZCYngMTtmGE AJcJMFtXPdvJnQuy4X173SInYPZY45bPPblgpX7961TbBBxIopvMeedBduvI FfuTk1DVvxv78zgP7lmZTYnqTIKBiJPUv4w84POmCPacmwSf+H+r3B/zINlJ /KC8xSS0PJfJ2q+UDwGVdp4vfSfBLuzhH+P5fPB4wnv6cM4kJLsfTyr0KQQt wz6n17xToFAQGl4eVQhS+WFRkVumoHWK6lmbWQhRjFIX3x1TMO3scIb4sRCU K4KvqopPwd6Sdj93kSK4XKRv5K02BTfyFkXDA4pgbaFuK3KcAt40Y+8KtWKw f39bqb5+CiY+VQrX6xTDuwQXBfPmKWjj2/eh2bQYqMwG8Zm2KQj1n95Iv1kM aa3XZ9Z9nIJVo8jkyXS8XUAgrHcc7/9fc7sobwnsy/ebVRaaBqqliujj/hIQ SFxa7r82DQUvkgnPx0rATMOmMslpGqLaOF1fLZQAmnrz8/KNaTir9LH87eZS 4L5vm1N7axoaeD31G06VQusBDgPFR9NQXJN7a+F9KYjcuM3OzJuGGOG9ndaB ZfC4hNevmjkND1wS3kZElIH7yb1c7r+nwaNue3BxbBlcruax3/ffNBjYbJbj yC8Dyws8SR7/poErm+151pcyUFD29e/mmwF/lSHTaawcbN96heZJzYDVxeyB APYK2G78ZDzfcgYMsiXKM/grYMVg6QnBegbUl1OfkHdWAKn3ZWSv3QwIJ7/G 9ipUwOLr9cmzTjNA/xmZ2mhXAfEzvjnjPjOg7XvDfmNLBewoHlDkiJqBQ7EK Uy/DKiHMSfT074oZyO5m3Lr/ohIi5MobPatnQGqHN/uN5EoYekY5N1WLO6F0 u3ZFJWySsH/b3YA7VUlz7mcl+D4ZIN7uwJ2nHGd4ugom5fPDeL/MgGSL2skN 66vhaSbziNfaDGRx9nfMba6Gm8Lc1QHsTJDUuWP2dVc1aKbs6L3Lgbuj1qVc sRq8fIJ/3t3AhAM0jZfXrlVDzodNRZc2M0FiAJtATdVw+seRWOe9TBCf14r1 v18DrqqRDQpqTFAlS1Adn9bA5/vPtJfUmWCQycVzKbEGgt7EmtedYIKPacfd Y+U1cFzfUU9VkwktZedd58ZqYGP1SfqGs0xw8LXRcjOuhQL55GpuMyYEnNMK srhaC5Qxr9eJF5nw9IBElZ5LLYxEbbssfZkJFd2jhw+F1kLFz6ZQzIIJG5Td d45U1sIO0cl9WrZMyF4MmrXeVweNFr+9atyYUEexljGSrYML8cueu28ygZal 6YAdrwOivVjCHXcm/LnIObDbpA6Mk4b9jnoxQbcyitgXVgdbNlNH7vgxYcIv Mdlkpg60l4S8ou8zQXapykCnvh4Im985UmOYYDxdWHO5vR7MdYwGybFM8P2e JeXSjf8u7d58qe0lEz60x65/Ml0PkUPd+tXxTDBK8Khj7PkAoavteSGJTPBS l5K1Cv4A4k3tgvXpTIiT25fgHvkBHEv2TydmMKFGfPvG+3EfwO664H/+mUzg 4Fs/nFHwAV7rzmYfzmJC7MC3xPGvH+CwDE/f/RwmVAbF8/oCgq0d0Ry9hUwY 8Hx6O0wfgUhBk0FiERPYHB6Oxl9CYGZau2BZzISzht7NNe4I9lubePWXMOHz XqM7bKkI0p5U2RPKmfDPOmThNFsDFFlJvDKqZcJ+dvXrdJsG+JCv1mtEYELw mUvzFo4NMKaS1DKL+/Nj75CRGw1wvllK5lkrE15sz0tbCWiApBVu7w4iE9bL 7vl64GUDeBqJnTrcwYSRi2sXA9ob4F66zd0CChO03uwaWU9rAE4Jw1uqVCYk f1fxjf7UAI0Tr7c34r7k5hGTOdQAu1ODrSg0JrTd/06l/G2AwB9jl/sYTMjN az4rrtAIrxc9zEo/MYFr7ltPvmojEBXkDx3qYYKdyqqDKjRCiJwYPQn3rial h+cMGkH3xYd3Ib1MiOp52+jn0AhFTrRyzc9McF8XoUZOaASrmYd+j74wQemy gawvRxM4W6tTLg0x4ZXM74/PuJsAaboceof777/XQXmbm6B8eenDAu7Wt6OU oV1NkGf3NeXZMD7+3w88Lyg1AZX7qUP9T3y9P62ukLveBEGjy27zo0z4amtj re/aBLUPbsmpjjHh1LENGx09m4BPPuH0Hdx8A6bmyUFNoHSV7LWGO/nQ7Apf XBOoWE4srY0zobFFUnOitQnIevPLPybx5/tV5zhnZxPweyxm7p5iQqSrz4v9 XU1wZfBEtRnuC1ubhi5/a4LnMHmgFfew9dUw4n94/oelUuo0EzauxJAypZph YO2llhqTCYZH2S9aRzaD2Br2fNMcE+6sVl+yfNYMD1eLRVRwZxO9zM3jmuG2 V5WqNW4Oq2FLk/RmOBx8Q7kAd1Uk8ZpOTTMcKYgy0fmNr6fhJ55yE81wc3rb qMM8Xr/wjLfsbDMw9xfLPMIdGLDmc2ixGfxH6wTf4/4k4Okvvq4Fbhck0adx R54wvbtDpAXUxxx2uy8wYT5O5MmabgtYXnv8znYRr2/X9XTVqAUuXU4JD8Zt eDjq2ZJZCyRFqAsn4s5p/hvz2xZvfyRs2IXbanYwYfR2C3xPtt5/8j8mEHXf ZVNzWsB3R/9Gvj94fSGbXHJhC/QkJepK4BYbFM5rL2+BJlWbMxq4A29FFjY3 toD8kdRbrrjlM25UVPa1QKStaUsr7oRVxZYUbgK4eNaney4xYUsMf/JeAQI0 UpyywnFHHBr1S9pOgKtuv68n4fa7mCCTKE4AsQdvdrXhNi1ii4k7QYAejZe+ IstM2GzfafvEkwBLmNT9Utxhy1nqfP4EWO/E/oqA+9+ze9seBxOgr6vdtwf3 VL1ie8RjAqi5lEQs4+7YkSAf+pYAZ3SN92ArTAglOawF9BHgi/qBiFrcK7Yn +5a+ESDgyNTFDtxef3aW+o8Q4KDJzsVe3LYHOh1u/SaAFon2bgE3dleR4snf CnfOPh+VXWXCkgJbkpNmK4Rv6daLwe3R3ndrVKcVBr3lrFJwj1mXGjsYtkKo 1Jrue9yfohzW21u0gnVYd14T7rIRsqu1byuYe6y8Z+K+mfBa7WJOKwS3a/zS +suEmQ9/DzsUtoIbSUHEAPeNIdv9t8pbofpJpqQZbjdZ6Y1xja2gcg0mHXA7 f6jp7u5rhV3718k+wm3/o9/DjIcIs80FlDbcw1wn7a8LEEG3s86EhvuaTOYl 3+1EcDL829CD287HDXspRgRa7CGzEdw2XH95u9WI4HouxnXdPyZYSO99Z+pK BAmd2EfKuD8bPkiw9yRCSX9ZkQbuK94jT3z8iHDWlLtFC/flugKf2BAifOlW KTLEfdEQtD4mEuFN5EzmddwXvGy+mJCJ4BPwS+4ZbkZcC+0agwj9S3eVXuI+ XyvV4t1LhIaTWVIJuI3X/8qNGSbCu5y7gxm4z8Xd9+9aJcKKcWFMBe6zNemC JofbgErMkO/DvTX34LdhxTbgTA5J/IK7/3Ve7i21NthsGLz4HffN2xWaCTpt IGsSHzSBO1a1w/27bRsErlvpXsY9WPGL5B7XBhFl7z8Lr+H7b9atePakNvhY U2G1G7d33IpdTEYbqO8a7t6Hm+sW53JFURvYS5gmS+KWPbZT6l9HG0hVyL1R xH279GRo1FobZCrYuOvj1sogGO3laoftEjOqhrj5YvR2FfG1g6Dqnj/GuFO9 TEu6drbD4OT0pYu4W486DYootYPPrHSaDe5n+6ff5+HnrpTouF3XcJtv8fLD NNthy6WKqOu4p2bvbLIzbIea4RgTF9xbi6I1cpzaYbOMup837oEUoY3q7u0Q Io5yfXG/jX7dRfZth4/rZrv9cKu6Z7jMPmgH4/BOwUDcVkcqX6kktUN4XJx8 KGs+8r7OE+jtMCMhxxWDWyPWd+fxXvz7WPlVx+Km3OHD8r62Q9weM4c43L/1 1MJfTLZDjItM/mtWfvzlTmvODihezP2VwsrTZDEGbwfckOb2ScNtW9Vsd3pr B2wQzJ1Nxx0W/uu9zL4OaPTk7HuLm3rgHPZHtQM8f51zeo/bjn/YzhU6oE2F +SEP9/x8QPjX0x0wcMNdoAC3cEs2reVCBxgKXswsYuXt1l977tYB5/8UPS9n 5ZNrw6VTO+C3YujzD6z+wi7kJWV1gPO9Y8mIdf3NcZpAfgfcO0nPasB94sQO kf+qO2DHS468Jla+3yuvuasDupfHwltZ+WZuuvLnDiiqCvUl4n6fm7qQM9gB lK+B1m24abcp2LPpDkDdlVIduHcKS9MtN5AAslqed+LOW2tYoPKT4LBk8TUK bmz0ksgpIRIoudgoUFnjr3h47dB+EkipqrTSWHnT7wsLaiRwbuVr72Lln78S ib5JAhkJ/tN9uHu5ai7H+OD1ep58Ydk7sD8uPoAEvr+6vD/jznbcK5gaRgKt IurrftZ6wTJ5i5NJYLjVgvyFVb+UoFueSYJi7y8mX3HrHBoNr84lgeUl2z6W A4Wk1zdVkEBx+NHXb7h/ThSuMigk0Kzay/iO+54NXa3nIwmM/G/q/cAt8mnO v/8zCRx/LjSwbNh4bGFohARmKoTsIdxV8bXT8/9IsFNR0P4n7iht4tftcmQY pb18OoZbsmZs965jZOBUPTrNcqMcj8U+dTLIztrojeNeFDnXc1CHDBZjz9km cFv/YlBVrclwAFotJ3EvO8zzn7hOBunfz4pYjh3YZqDpSgbv6zs4pnC3ES+3 6fqRQYfdJZNlheSvDVeiybBzU2bvNG6yINua1UsyGOwlic3gdny0/8S1RDJ+ fqe7svzGx77a9R0ZnJseL7PMpT9RHIjIQK4+xDuLu++/hfRkJhnCHK6v/sL9 QVW1WmKRDPQ0GfU53Om3A6i5q2TYY/fTn2W3lX8rFdydQLLX/sXyv38bzKji nSDyWvzTb9w/QM/VTLoTQuKX+OZxE+9F3e+X7wQJpyEtlp+t21IweqITmsPY 81gW4xLZwHa5EwzbOr0XWOPTsdwTZtUJHtTsDJYnw5MV+a53wuuzZQyWy7jF bYS9OiHum/ORRdxn+GWr5aM6IWolZ4BlFyHM1bahE/TrpHb8Yd1Ps3v3R1s7 ofzJPXWWFeOa4m90dkJmtKo1y6s7dFpuf+4E8aiuTJaf7jLe82K+E/rYVqWW cHtZvlAUXumEnONvzrJ8KemjbjI7BWJvFDmyLLrP/FbuJgpELZzIZLlUzI7a JEXB3wdkdizjfnUt8+dZOQro+uYqsByYObJCOUYB74iCcyyfkXSV6teiwOxu owcs9x7yuf/bkgIRk1IjLK/KhylKPKfAkvWX1yu4x9YuXFOPp8CxbNV8lrsp +2IuJFHgi6ZWA8sFbtVz93IoYB1+/SfLttlTxV8aKeC1d7PsKms+/Kq/zxMp 8KR3TYNltTNhW/goFHiQmX2OZaHhfZ5qnylweUXyJsut+0zk4+cosNl34T3L pTP7bAr+UPDzCaGG5dT6qWjCPwp0vrnYzvJtizDmbx4qkNI//GRZNr66wFic Cryvmnb9xf18k+hhHlMqzDk6BbEc/GXKcv8VKugMlUWw7JJXHaVqQwW1+7QY lrX1TKYc3Kgwouufw/Liw7D3zaFUGL2ewmB5yNSk/3MkFdjsAwZYpomL8s49 o8L9e9IjLOc0VruIJlGhpZ9viWXLv1OHgsqp4DA/tfsf7rPkavPYWioUM0IO sHwsMezR+0YqrO1YOMzypuOi432dVJDSd8ZYbvQxyVYeocK6heyrLAsuWgr6 89LAjrEujuWb5uRLPptoUHnV/g3LbXXqbzy20GCnQm46y8EhIgecd9Dg7v3h ApbHBHqVr4jTIHFsXyvLp3x07lyUpAH7f4UklpN7KtCFQzS4WXWQzrJJ8suz +nI0IIxT+1n+IGNyRUOdBjUt/LMs74xuSlbFaCB8bGSeZZ+5o0NKmjSwtMhZ YvlQtYDbYR0aLB75tW6Ntd+coQTtNaFBmMszIZZdbHXT2Fzx+m9MlVgmtFT9 XL1Bg4nwNRWWRaWkpJc8aOAmmaDOcvcMV+mvWzSIepGixfLJwJaWHw9oYBw0 Z8RywjdF7m8P8fHbipmwvKCVca4/Ap+PDdoXWc7lfvCp6ykNciKvWrK8LR7G WhJokPyT6ciyx3KBbGMSDaSMy1xY7ri617M+lQb1em43WL4n8XepPIsG/wiV XixPFNfwviuhwWBwUyDLDeRjco86aCCaSn/6P78st27tpAFZQ/D5/2x17BkH nQbnanVjWEazSr+CemiQJhcXz/IHIaVSr2Ea9ASXpPzPWYpC0xM0yL/2MIPl elVFX8dfNHhQofCO5TpLBRXLfzQIPShW8D/PHH31aT0dDEYdilmuvXd0yZiX DhLmj8tYrsmUrz0tTAe/7f41LFdPHQE5BTrM/V1rYbkq+EhqjiodlLJsif+z wBF2CaCDavD79v9Z6XCzsAEdavRXOlmuvCz7kN+cDo+PLtJZrgiU0VnnQAd6 cHo3y+Wp0tz/edFBfTNXH8tlLYdIk3fpMH5BcoDlEj4po+7XdHjYWvSd5UYD De2pt3S4mbIyxDItyvg4RwkdNjvtGmF5kGx/ROQDHUaPCI6xzOS7LX60gw4z 5J/jLG96ksZv/YMO5SsHplmW5e/4L2qZDgx+JvN/641/F3lMmgFbuizmWX7H 75aqbcGA4eD4/1i2LdUYUicyYNvA8grL////C7Co2/WP5f8DBAwzCA== "]]}}, {{}, {{}, {}, {RGBColor[0.2, 0.8, 0.4], PointSize[0.007333333333333334], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJxd2n1QlVUeB3DWHHJch5jGdRzHjFpyXNOi0k2zfLQyJXPBl1p1HJdh2JZx nLrbMA3DOi4qFZkVKbqoYCAIkmTAukiucS8sa0guketslppkb75kYGi+6z7P 73v8fqd7/9D5DPDcc55zzu+8/M4d6c/P+mOfmJiYef4/wf8P2Oe/4Rj3eXVy 2jedd8pHU17/23O3ymMX7koe0Ed+bfF3l6vP7Ke/zBm4feqX8oP2QDl42oqI /NWWja0JtfL4HW0vNr0tv9lybsSCN2W/cIcuLpUnWAHlt04v8cYulK10M+RH +n9aHnpEXjO47zNxo+UTw+/rVzNU9qzC8trHghp/Qp+a2TjspVOyvb5DslW3 Xbbi7ZLtcdXyevvI3VV7pj/4qjyloffqgWw5eHsvZMp+ZdPj58rTrEHkTfZA +az/tBPD5ScH9Ln7lUFy6ZB7jyTGyj/5rdFyrpN+Cg1Mb7YCyhdmBy0s/84v 3fgdckUoaBH50tJFu7PWyKnWYeRKq7B8JWjedHlW0Bwz5a3B65ssXwuqe588 xzqg/I69QBkfuWbo/IwJRz+m51qH/Th8LWFbXcknyyYGvam+RPYbx++S8gLr 0HI/e6Bs3X+IbN3pYgdtzfOZbNVtlDNsQMjxVkDZf7l+j5czbcDIwejNGShH 2sv8Fv0PjeEu2/Cpl607viVb84Zke30pslX3XtmKFyfb407vC39Q/fvC3uc/ mrgPHzrbBqycGLvMH6KyhYtFsg2/ZNm68wjZukc/OdcG/Ef0qPoSfwTJBzvO +z1czrOAICdZA8uHrYAy4q2M+CojnrbTiJ8y4qWM+CgjHsqIfzLinYz4tjd8 U2VP3foJfT3EMxnxS0a8khGfZMQjucTij5xsHVpGfGmjEU9kxA8Z8UJGfJAR D2SMfxnjXbbh2/0hjeEm2/DYLlt3fl227rdYtu4yXbbmvfvD8F2H5lVX3PyA Z83RX7bXd2IPjerKVrwq2R73ivysfeSgs5RNkYPRdiRRXmQBQfYr63fof9M2 /bbI1vvKZJselskWbtNkC3+ebOFqmGzh5WorbeHgiGzDd7dsw22jbMMjR7bu PF+27je+NbyiOXFGR+U8z7rLYHlk0Lzn/0Vbc3wq2+trkK26a2UrXpZsj5st Y30lYz0lY/3UQmM6lbE+krEekrH+kbHekbG+kbGekbF+aaYRXmSsT2SsR2Ss P5rD9TcdnTLsTzmeDY+psnXn4bJ1v1jZuss3ERrNK1tzlMspCIC0VTddtuJN lu1xCfK168EnTGP+ljFfy5ifZczHTTTmXznePfCGMb/KmE8/oDF/ypgvZcyP MubD3eGELy41Nq1f62H+kzHfyZjfZMxn/6Qxf8mYr+R8mwDkLhtwu+hxNv/I BZgg6OM2IOVJ9gLfp4ts/pB7bMDK02x+kEttPmikL9iAllPRIPRWi+9yjMXz nfRci98y4rWM+LwzfDKS8ef6r2pcPG6gEX9lxFsZ8VXG8P0HjfgpI17KiI87 aDSvjPgnI97JiG9/p5db8eTPLX7J91u8kldafKqnj1k8kh+y+COvRoemT1p8 qaMftXgib7D4URf+VWXc3uQ7It6PFi/kJy0+1NKbbYDIl2z8y7MQMOk5Nhzf o/vaeJbRXbbTGK8yqvMujfEoY/zV0BhvMsbXNhrjScb4eYfGeJExPqppjAcZ /X8rjf4uo39X0f2sP1eFt0yLW7GzuMNrtP5bSWdaf5UHW//cQrdZf6ygs63/ ySOsv5XTB61/yfnWnzbT46z/yMetv5TRRdY/5GnWH0rpC9b+cioWxHStte8m Oh4bNDpk7VdMd2KBQSfZ4zbQBVjw0j32/ov0/diAhePHDPzlbYM+82rt/a6j 47GAoEP2/grpTntfa+gkez+r6QJssOgeq38BXWr1fYNOs/qtohOsPivpLvu6 fDpi5X2ZzrXy5dGTrDzLaWyYc/X79n1L9PO/Bs/PjnpeVtTfh6J+PzPq52lR TpVvnBMU/fr6bQOO3fi593OnyXh+1M9DtCtf1O9n6+eoX9Tf59Lu/UQ9L492 7zfq+fn6e7RP1Pet0t+jfaO+v4AuRf+IKs9qugv9K6p8hXQC+mdUedd5t/Ru Gtk69jsvDf2bRvmL6FKMDxr12UB3YXzRqF8xnYDxSaO+m/T9GN/6fqt/KZ2K +KDyIH7QPYgvKh/iD12A+KTyIn7RSYhvKj/iH92J+Kj6IH7SIcRX1Q/xl45H fPZuX3EgpXzCKfe+5VrEdxrvX07F/ECjPeQezC+0m39oNz/Rbv6i3fxGu/mP dvMj7eZP2s2vtJt/aay336OxnJZxXldL4/xPxnmijPNJGeeddd7oiob22P2n vWKsP+jHsT6hv8f6hS5EheiHsf6hv8b6iF6F9RM9Busr+jDWX3Qe1mf0KKzf 6ANY39FLsP6jE7E+pPdh/UhnYX1JD8X6k27F+pRejPUrPRDrW3o31r90BtbH 9ACsn73ypLazvaO7vR1YX9MLsP6m+2J9Ttdg/U7PQYehr2D9T1dgf0A/hf0D fRb7C7oY+w/6cexP6O+xf6ELsb+hH8b+h/4a+yN6FfZP9Bjsr+jD2H/Redif 0aOwf6MPYANAL8H+zzs/6/3yjki3l4j9Ib0P+0c6C/tLeij2n7Tbn9Ju/0q7 /S3t9r+02x/Tbv9Mu/017bbLNGbzCI3xLuM8X8b4l5EvkBEPZOQjZMQHGfmO ZhrxQkY+pdn7y4U/jF98ptvFD7kH5yM04olchPMVGvFFnoTzGRrxRj6O8x0a 8UcuwAaTRjySx+F8iUZ8krtwPkUjXsn5ON+iEb/kJJyP0Yhn8kGcr9GIb3Iu zue8itza36y92u3inTwC53s04p/ciQMkGvFQzsb5Io34KCfgfJJGvJTbcL5J I37KIZyP0oin8mCcr9KIr3voCM5nacRbORPnuzTirxyP82Ea8VhuxPky7c6f vc7L1RlN17tvnE/T7vyadufbtDv/pt35OO3Oz2l3vk6783fanc/T7vyeduf7 tDv/p11+gHb5A9rlF2jkO/fSyI/KPyJ/QT+B/Aa9AfkP+gfkR+hHkT/x6get r77iex3yK/RJ5F/oicjP0KuRv6G/RX6Hfgj5H/oNHODSx5A/on+L/BK9Evkn +gvkp+j7kb+iX0Z+i/4c+S/6HuTH6OXIn9H/Q36NHon8G70U+Tl6P/J39HDk 9+gc5P/oDuQHvV/YPNLj3Yn8If0i8ot0O/KP9DDkJ+kXkL+k9yC/SQ9B/pN+ DvlRugX5U3oQ8qv0IuRf6SbkZ+lbkb+ln0V+l96F/C8dhwFHpyN/TDcgv0z3 R/6ZXoj8NF2P/DUdi/w2PR/5b3o78uM0/u+ktyG/Tj+N/Dt9Hfl5uhr5e3o2 8vv0VeT/6SrcD6Bn4v4AfRn3C+gtuH9Ap+B+An0R9xfoctxvoGcgYUOfx/0I ugz3J+jpuF9Bn8P9C/pt3M+gk3F/g+7F/Q66BPc/6Km4H0Kfwf0ReiPul9BT cP+EdvdTaHd/hXb3W2h3/4V292Nod3+GdvdraHf/hnb3c2h3f4d293tod/+H dveDaHd/iHb3i2h3/4h295Nod3+JdvebaHf/iXb3o2h3f4p296tod/+K/j8u VepS "]]}}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->450, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{-0.299999987755102, 0.299999987755102}, {0, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.429257888413179*^9, 3.5223861365303164`*^9, 3.657329759638842*^9}, Background->RGBColor[ 0.9366445410849165, 0.9366445410849165, 0.9366445410849165], CellLabel->"Out[28]="] }, Open ]], Cell["\<\ \:4ee5\:4e0a\:306e\:30b0\:30e9\:30d5\:304c\:610f\:5473\:3059\:308b\:3053\:3068\ \:306f\:ff0c \:ff08\:ff11\:ff09\:ff11\:30f6\:6708\:5f8c\:306e\:682a\:5f0f\:53ce\:76ca\:7387\ \:306e\:5206\:5e03\:306f\:ff0c\:305d\:308c\:304c\:ff0c\:304b\:306a\:308a\:306e\ \:983b\:5ea6(\:4f8b\:3048\:307010\:5206\:306b\:4e00\:56de)\:306e\:53d6\:5f15\ \:304c\:72ec\:7acb\:306b\:7e70\:308a\:8fd4\:3055\:308c\:3066\:51fa\:6765\:4e0a\ \:304c\:308b\:3068\:8003\:3048\:308b\:3068\:ff0c\:6b63\:898f\:5206\:5e03\:3067\ \:8fd1\:4f3c\:3067\:304d\:308b \:ff08\:ff12\:ff09\:4e00\:65e5\:306b\:4e00\:56de (NNN = 21) \ \:7a0b\:5ea6\:306e\:53d6\:5f15\:983b\:5ea6\:3067\:306f\:ff0c\:6b63\:898f\:5206\ \:5e03\:3067\:306e\:8fd1\:4f3c\:3067\:306f\:8aa4\:5dee\:304c\:76ee\:7acb\:3064 \:3068\:3044\:3046\:3053\:3068\:3067\:3042\:308b\:3002 \:3000\:3069\:306e\:7a0b\:5ea6\:300c\:8fd1\:4f3c\:300d\:3067\:304d\:3066\:3044\ \:308b\:304b(\:8aa4\:5dee\:304c\:3069\:308c\:304f\:3089\:3044\:3042\:308b\ \:304b)\:306f\:ff0c\:95a2\:6570(\:30b0\:30e9\:30d5)\:9593\:306e\:8ddd\:96e2\ \:3092\:3069\:3046\:8a08\:308b\:304b\:3092\:6c7a\:3081\:308c\:3070\:ff0c\:305d\ \:306e\:5927\:304d\:3055\:3092\:8a08\:7b97\:3059\:308b\:3053\:3068\:304c\:51fa\ \:6765\:308b\:3002\:ff08\:300c\:8ddd\:96e2\:300d\:3068\:3057\:3066\:306f\:ff0c\ \:4f8b\:3048\:3070\:ff0c2\:3064\:306e\:30b0\:30e9\:30d5\:3067\:56f2\:307e\ \:308c\:308b\:30a8\:30ea\:30a2\:306e\:9762\:7a4d\:306a\:3069\:304c\:8003\:3048\ \:3089\:308c\:308b\:3002\:ff09\ \>", "Text", CellChangeTimes->{{3.429258304543543*^9, 3.4292583713224087`*^9}, { 3.429258413435616*^9, 3.4292588319602337`*^9}}] }, Open ]] }, Open ]] }, ScreenStyleEnvironment->"Presentation", WindowSize->{1097, 694}, WindowMargins->{{34, Automatic}, {Automatic, 0}}, ShowSelection->True, FrontEndVersion->"10.1 for Mac OS X x86 (32-bit, 64-bit Kernel) (2015\:5e743\ \:670824\:65e5)", StyleDefinitions->"Textbook.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 66, 0, 85, "Title"], Cell[636, 24, 151, 2, 48, "Subtitle"], Cell[790, 28, 175, 3, 44, "Subsubtitle"], Cell[968, 33, 815, 13, 84, "Text"], Cell[1786, 48, 658, 14, 65, "Text"], Cell[2447, 64, 531, 18, 92, "Text"], Cell[2981, 84, 166, 2, 35, "Text"], Cell[3150, 88, 681, 24, 58, "Text"], Cell[3834, 114, 321, 13, 66, "Text"], Cell[4158, 129, 72, 4, 62, "Text"], Cell[4233, 135, 1160, 19, 143, "Text"], Cell[5396, 156, 1770, 40, 209, "Text"], Cell[7169, 198, 1826, 29, 336, "Text"], Cell[8998, 229, 694, 14, 85, "Text"], Cell[9695, 245, 5139, 144, 574, "Input"], Cell[CellGroupData[{ Cell[14859, 393, 215, 5, 34, "Input"], Cell[15077, 400, 11691, 202, 299, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26805, 607, 218, 3, 67, "Subsubtitle"], Cell[27026, 612, 629, 11, 120, "Text"], Cell[CellGroupData[{ Cell[27680, 627, 981, 30, 58, "Input"], Cell[28664, 659, 402, 9, 46, "Output"] }, Open ]], Cell[29081, 671, 250, 7, 36, "Text"], Cell[CellGroupData[{ Cell[29356, 682, 327, 11, 34, "Input"], Cell[29686, 695, 197, 4, 46, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[29920, 704, 377, 13, 34, "Input"], Cell[30300, 719, 199, 4, 46, "Output"] }, Open ]], Cell[30514, 726, 303, 7, 40, "Text"], Cell[30820, 735, 256, 3, 35, "Text"], Cell[31079, 740, 414, 14, 34, "Input"], Cell[31496, 756, 414, 14, 34, "Input"], Cell[31913, 772, 132, 1, 35, "Text"], Cell[CellGroupData[{ Cell[32070, 777, 260, 9, 34, "Input"], Cell[32333, 788, 195, 4, 46, "Output"] }, Open ]], Cell[32543, 795, 188, 3, 35, "Text"], Cell[32734, 800, 224, 7, 34, "Input"], Cell[32961, 809, 64, 0, 35, "Text"], Cell[33028, 811, 393, 13, 34, "Input"], Cell[33424, 826, 393, 13, 34, "Input"], Cell[33820, 841, 185, 4, 63, "Text"], Cell[34008, 847, 1092, 35, 81, "Input"], Cell[35103, 884, 90, 1, 35, "Text"], Cell[35196, 887, 847, 26, 58, "Input"], Cell[CellGroupData[{ Cell[36068, 917, 502, 14, 58, "Input"], Cell[36573, 933, 4701, 91, 310, "Output"] }, Open ]], Cell[41289, 1027, 277, 3, 35, "Text"], Cell[41569, 1032, 846, 26, 58, "Input"], Cell[CellGroupData[{ Cell[42440, 1062, 500, 14, 58, "Input"], Cell[42943, 1078, 4521, 88, 310, "Output"] }, Open ]], Cell[47479, 1169, 575, 9, 56, "Text"], Cell[48057, 1180, 846, 26, 58, "Input"], Cell[48906, 1208, 848, 26, 58, "Input"], Cell[49757, 1236, 999, 28, 58, "Input"], Cell[CellGroupData[{ Cell[50781, 1268, 502, 14, 58, "Input"], Cell[51286, 1284, 4986, 95, 310, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[56309, 1384, 501, 14, 58, "Input"], Cell[56813, 1400, 5328, 101, 310, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[62178, 1506, 501, 14, 58, "Input"], Cell[62682, 1522, 6009, 112, 310, "Output"] }, Open ]], Cell[68706, 1637, 593, 9, 64, "Text"], Cell[CellGroupData[{ Cell[69324, 1650, 179, 5, 34, "Input"], Cell[69506, 1657, 22023, 379, 310, "Output"] }, Open ]], Cell[91544, 2039, 168, 2, 35, "Text"], Cell[CellGroupData[{ Cell[91737, 2045, 406, 14, 34, "Input"], Cell[92146, 2061, 196, 4, 46, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[92379, 2070, 225, 7, 34, "Input"], Cell[92607, 2079, 195, 4, 46, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[92839, 2088, 501, 15, 58, "Input"], Cell[93343, 2105, 17149, 293, 324, "Output"] }, Open ]], Cell[110507, 2401, 421, 7, 56, "Text"], Cell[CellGroupData[{ Cell[110953, 2412, 138, 4, 34, "Input"], Cell[111094, 2418, 22278, 378, 324, "Output"] }, Open ]], Cell[133387, 2799, 245, 3, 35, "Text"], Cell[CellGroupData[{ Cell[133657, 2806, 138, 4, 34, "Input"], Cell[133798, 2812, 20975, 357, 358, "Output"] }, Open ]], Cell[154788, 3172, 1599, 25, 224, "Text"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)