(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 6.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 170823, 3811] NotebookOptionsPosition[ 165834, 3647] NotebookOutlinePosition[ 166453, 3673] CellTagsIndexPosition[ 166366, 3668] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["\:6570\:7406\:30d5\:30a1\:30a4\:30ca\:30f3\:30b9 ", "Title"], Cell["9-3. Absence of Arbitrage", "Subtitle", CellChangeTimes->{{3.653108871027906*^9, 3.653108873186883*^9}}], Cell[TextData[StyleBox["9.3 What is an arbitrage opportunity? ", FontWeight->"Bold"]], "Subsubtitle", CellChangeTimes->{{3.6531088778742123`*^9, 3.653108880978589*^9}}, FontColor->RGBColor[0, 0.501961, 1]], Cell["\<\ \:3000\:88c1\:5b9a\:6a5f\:4f1a\:3068\:306f\:4f55\:304b\:3002\:7406\:8ad6\:4e0a\ \:306f\:4ee5\:4e0b\:306e\:3088\:3046\:306a\:ff0c\:7121\:30ea\:30b9\:30af\:306e\ \:305f\:3060\:5132\:3051\:306e\:30c1\:30e3\:30f3\:30b9\:3092\:6307\:3059\:3002\ \:73fe\:5b9f\:306b\:306f\:ff0c\:78ba\:5b9f\:306b\:5132\:3051\:3089\:308c\:3066\ \:640d\:306f\:3057\:306a\:3044\:3068\:3044\:3046\:3053\:3068\:306f\:307e\:305a\ \:306a\:3044\:304b\:3089\:ff0c\:591a\:5c11\:306e\:30ea\:30b9\:30af\:3092\:53d6\ \:3063\:3066(\:3059\:306a\:308f\:3061\:ff0c\:3046\:307e\:304f\:3044\:3051\ \:3070)\:5132\:3051\:3089\:308c\:308b\:30c1\:30e3\:30f3\:30b9\:306e\:3053\ \:3068\:3092\:6307\:3059\:3053\:3068\:304c\:591a\:3044\:3002\:4ee5\:4e0b\:3067\ \:306f\:ff0c\:300c\:7121\:30ea\:30b9\:30af\:300d\:3068\:3044\:3046\:9650\:5b9a\ \:3092\:7e70\:308a\:8fd4\:3057\:3066\:306f\:3064\:3051\:306a\:3044\:304c\:ff0c\ \:88c1\:5b9a\:6a5f\:4f1a\:3068\:306f\:7406\:8ad6\:4e0a\:306e\:65b9\:ff0c\:3059\ \:306a\:308f\:3061\:ff0c\:7121\:30ea\:30b9\:30af\:88c1\:5b9a\:6a5f\:4f1a\:306e\ \:65b9\:3092\:6307\:3059\:3002\ \>", "Text", CellChangeTimes->{{3.6531075971996517`*^9, 3.653107605135159*^9}}], Cell["\<\ \:3000\:4f8b\:3068\:3057\:3066\:ff0c\:5c06\:6765\:6642\:70b9\:306e\:72b6\:614b\ \:6570\:304c 2 \:3067\:3042\:308b\:4e00\:671f\:9593\:30e2\:30c7\:30eb\:3092\ \:8003\:3048\:308b\:3002\:5c06\:6765\:306e\:72b6\:614b\:3092\:ff0c\:597d\:6cc1\ \:3068\:4e0d\:6cc1\:3068\:3057\:3066\:304a\:3053\:3046\:3002\:8a3c\:5238\:306e\ \:6570\:30822\:3068\:3057\:3088\:3046\:3002\:3072\:3068\:3064\:306f\:682a\ \:ff0c\:3082\:3046\:3072\:3068\:3064\:306f\:50b5\:5238\:3068\:3088\:3076\:3002\ \:682a\:306f\:ff0c\:5c06\:6765\:304c\:597d\:6cc1\:306a\:3089200\:5186\:ff0c\ \:4e0d\:6cc1\:306a\:308980\:5186\:306b\:306a\:308b\:3002\:50b5\:5238\:306f\ \:ff0c\:597d\:6cc1\:ff0c\:4e0d\:6cc1\:306b\:304b\:304b\:308f\:3089\:305a\:ff0c\ \:5c06\:6765\:306e\:4fa1\:5024\:306f 100\:5186\:3067\:3042\:308b\:3002\ \>", "Text"], Cell[TextData[{ Cell[BoxData[ FormBox[ RowBox[{"\:3000", RowBox[{ SubscriptBox[ RowBox[{ "\:30dd", "\:30fc", "\:30c8\:30d5\:30a9\:30ea\:30aa\:306f", "\:ff0c", "\:73fe\:5728\:306b\:304a\:3044\:3066", "\:ff0c", "\:682a\:3068\:50b5\:5238\:3092\:7d44\:307f\:5408\:308f\:305b\:3066\ \:4f5c\:308b", "\:3002", "\:682a\:3092\:ff58"}], "1"], RowBox[{"(", "\:682a", ")"}], SubscriptBox[ RowBox[{"\:ff0c", "\:50b5\:5238\:3092\:ff58"}], "2"]}]}], TraditionalForm]]], "(\:679a)\:7d44\:307f\:5408\:308f\:305b\:308b\:3068\:ff0c\:5c06\:6765\:304c\ \:597d\:6cc1\:306a\:3089\:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\:306e\:4fa1\ \:5024\:306f\n", Cell[BoxData[ FormBox[ RowBox[{ FormBox[ RowBox[{"\:3000", RowBox[{"200", "*", SubscriptBox["\:ff58", "1"]}]}], TraditionalForm], "\:ff0b100", "*", SubscriptBox["\:ff58", "2"]}], TraditionalForm]]], "\:3000(\:5186)\n\ \:306b\:306a\:308a\:ff0c\:5c06\:6765\:304c\:4e0d\:6cc1\:306a\:3089\:ff0c\:30dd\ \:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\:306e\:4fa1\:5024\:306f\n\:3000\:300080*\ \:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "1"], TraditionalForm]]], "\:ff0b100*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "2"], TraditionalForm]]], "\:3000(\:5186)\n\:306b\:306a\:308b\:3002" }], "Text"], Cell[TextData[{ "\n\:3000\:3053\:3053\:3067\:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\:306e\ \:4e2d\:8eab\:3092\:ff0c\:4f8b\:3048\:3070\:ff0c\:682a\:5f0f ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ SubscriptBox["\:ff58", "1"], "=", StyleBox[ RowBox[{"-", "1"}], FontWeight->"Bold"]}], ",", " ", "\:50b5\:5238"}], TraditionalForm]]], Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["\:ff58", "2"], "=", StyleBox["2", FontWeight->"Bold"]}], TraditionalForm]]], "\:3068\:3057\:3066\:307f\:3088\:3046\:3002\:3059\:308b\:3068\:3053\:306e\ \:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\:306f\:ff0c\:597d\:6cc1\:306e\:3068\ \:304d\:306b\:4fa1\:5024\:304c0\:3068\:306a\:308b\:304c\:ff0c\:4e0d\:6cc1\ \:306e\:3068\:304d\:306b\:4fa1\:5024\:304c 120 \:3068\:30d7\:30e9\:30b9\:306b\ \:306a\:308b\:3002\:3053\:306e\:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\:306f\ \:5c06\:6765\:4f55\:304c\:8d77\:3053\:3063\:3066\:3082\:304a\:91d1\:3092\:53d6\ \:3089\:308c\:308b\:3053\:3068\:304c\:306a\:304f\:ff0c\:7279\:5b9a\:306e\:72b6\ \:6cc1(\:300c\:4e0d\:6cc1\:300d)\:306b\:306a\:3063\:305f\:3068\:304d\:306f\ \:ff0c\:304a\:91d1\:304c\:624b\:306b\:5165\:308b(\:30d7\:30e9\:30b9\:306e\ \:4fa1\:5024\:3092\:6301\:3064)\:3082\:306e\:3067\:3042\:308b\:3002\n\:3000\ \:3053\:306e\:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\:3092\:73fe\:5728\:624b\ \:306b\:5165\:308c\:308b\:305f\:3081\:306b\:ff0c\:3042\:306a\:305f\:306a\:3089\ \:ff0c\:3044\:304f\:3089\:306a\:3089\:652f\:6255\:3046\:3060\:308d\:3046\:304b\ \:ff1f\:30000\:5186\:306b\:306a\:308b\:304b120\:5186\:306b\:306a\:308b\:304b\ \:ff0c\:308f\:304b\:3089\:306a\:3044\:3068\:3044\:3046\:30ea\:30b9\:30af\:304c\ \:3042\:308b\:300250\:5186\:3060\:308d\:3046\:304b\:ff0c30\:5186\:3060\:308d\ \:3046\:304b\:3002\:3053\:306e\:91d1\:984d\:306f\:4eba\:306b\:3088\:3063\:3066\ \:9055\:3046\:3067\:3042\:308d\:3046\:3002\:3044\:305a\:308c\:306b\:305b\:3088\ \:ff0c70\:5186(\:ff1d120-50)\:307e\:305f\:306f90\:5186( \:ff1d12-30)\:5132\ \:304b\:308b\:304b\:3082\:77e5\:308c\:306a\:3044\:304c\:ff0c\:652f\:6255\:3063\ \:305f\:5206\:5168\:984d\:3092\:5931\:3046\:53ef\:80fd\:6027\:3082\:3042\:308b\ \:3002\n\:3000\:3057\:304b\:3057\:ff0c\:3053\:306e\:30dd\:30fc\:30c8\:30d5\ \:30a9\:30ea\:30aa\:3092\:624b\:306b\:5165\:308c\:308b\:306e\:306b\:30b3\:30b9\ \:30c8\:304c\:304b\:304b\:3089\:306a\:3044\:ff0c\:3042\:308b\:3044\:306f\:ff0c\ \:304a\:91d1\:304c\:3082\:3089\:3048\:308b\:3068\:3044\:3046\:306e\:3067\:3042\ \:308c\:3070\:ff0c\:8ab0\:3067\:3082\:559c\:3093\:3067\:30dd\:30fc\:30c8\:30d5\ \:30a9\:30ea\:30aa\:3092\:624b\:306b\:5165\:308c\:308b\:3067\:3042\:308d\:3046\ \:3002\:306a\:305c\:306a\:3089\:ff0c\:3053\:308c\:306f\:305f\:3060\:5132\:3051\ \:306e\:30c1\:30e3\:30f3\:30b9\:3060\:304b\:3089\:3060\:3002\:4f8b\:3048\:3070\ \:ff0c\:50b5\:5238\:4fa1\:683c\:304c\:73fe\:572880\:5186(\:4e00\:679a\:3042\ \:305f\:308a)\:3067\:ff0c\:682a\:4fa1\:304c\:73fe\:5728170\:5186\:3060\:3063\ \:305f\:3068\:3057\:3088\:3046\:3002", Cell[BoxData[ FormBox[ RowBox[{" ", "\:50b5\:5238"}], TraditionalForm]]], Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["\:ff58", "2"], "=", StyleBox["2", FontWeight->"Bold"]}], TraditionalForm]]], "\:3060\:304b\:3089\:ff0c160\:5186\:5fc5\:8981\:3002\:3060\:304c\:ff0c\:682a\ \:5f0f\:3092\:4e00\:682a\:304b\:3089\:58f2\:308a\:3059\:308b(", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["\:ff58", "1"], "=", RowBox[{ StyleBox["-", FontWeight->"Bold"], StyleBox["1", FontWeight->"Bold"], " "}]}], TraditionalForm]]], ")\:304b\:3089\:ff0c170\:5186\:5165\:3063\:3066\:304f\:308b\:3002\:73fe\:5728\ \:306f\:ff0c\:3053\:308c\:3089\:306e\:5dee\:3057\:5f15\:304d10\:5186\:624b\ \:306b\:3059\:308b\:3053\:3068\:304c\:3067\:304d\:ff0c\:5c06\:6765\:306f\:ff0c\ \:3046\:307e\:304f\:3044\:304f\:3068120\:5186\:3082\:3089\:3048\:308b\:304c\ \:3002\:60aa\:304b\:3063\:305f\:3068\:3057\:3066\:3082\:304a\:91d1\:3092\:53d6\ \:3089\:308c\:308b\:3053\:3068\:304c\:306a\:3044\:3002\n\:3000\:3053\:3053\ \:3067\:ff0c\:3082\:3057\:682a\:4fa1\:304c160\:5186\:3060\:3063\:305f\:3089\ \:3069\:3046\:304b\:3002\:50b5\:5238\:4fa1\:683c\:304c80\:5186\:306a\:3089\ \:ff0c{-1,2} \:3068\:3044\:3046\:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\ \:3092\:73fe\:5728\:4f5c\:308b\:306e\:306b\:30b3\:30b9\:30c8\:306f\:304b\:304b\ \:3089\:306a\:3044\:3002\:5c06\:6765\:306f0\:5186\:304b120\:5186\:306a\:306e\ \:3067\:ff0c\:5c06\:6765\:304c\:597d\:6cc1\:3067\:3082\:4e0d\:6cc1\:3067\:3082\ \:5132\:304b\:308b\:3068\:3044\:3046\:308f\:3051\:3067\:306f\:306a\:3044\:3002\ \:3053\:308c\:306f\:ff0c\:5b9d\:304f\:3058\:3092\:305f\:3060\:3067\:3082\:3089\ \:3046\:3088\:3046\:306a\:3082\:306e\:3067\:ff0c\:3084\:306f\:308a\:ff0c\:305f\ \:3060\:5132\:3051\:306e\:30c1\:30e3\:30f3\:30b9\:3068\:8003\:3048\:308b\:3053\ \:3068\:304c\:3067\:304d\:308b\:3002\n\n\:3000\:4e00\:822c\:5316\:3057\:3066\ \:ff0c\:682a\:4fa1\:3092 ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[ RowBox[{ SubscriptBox["S", "0"], "\:5186"}], TraditionalForm], SubscriptBox[ RowBox[{"\:ff0c", "\:50b5\:5238\:4fa1\:683c\:3092B"}], "0"]}], TraditionalForm]]], "\:5186\:3068\:3059\:308b\:3068\:304d\:ff0c\n ", Cell[BoxData[ FormBox[ SubscriptBox["S", "0"], TraditionalForm]]], " * x", Cell[BoxData[ FormBox[ SubscriptBox["", "1"], TraditionalForm]]], "\:ff0b", Cell[BoxData[ FormBox[ SubscriptBox["B", "0"], TraditionalForm]]], " * x", Cell[BoxData[ FormBox[ SubscriptBox["", "2"], TraditionalForm]]], " \:ff1d - ", Cell[BoxData[ FormBox[ SubscriptBox["S", "0"], TraditionalForm]]], " + 2 ", Cell[BoxData[ FormBox[ SubscriptBox["B", "0"], TraditionalForm]]], " \[LessFullEqual] 0 \:ff0c\:3059\:306a\:308f\:3061\:ff0c\n ( \ -", Cell[BoxData[ FormBox[ SubscriptBox["S", "0"], TraditionalForm]]], ") * x", Cell[BoxData[ FormBox[ SubscriptBox["", "1"], TraditionalForm]]], "\:ff0b( -", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["B", "0"], ")"}], TraditionalForm]]], "* x", Cell[BoxData[ FormBox[ SubscriptBox["", "2"], TraditionalForm]]], " \:ff1d( -", Cell[BoxData[ FormBox[ SubscriptBox["S", "0"], TraditionalForm]]], ") ( -1)\:ff0b( -", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["B", "0"], ")"}], TraditionalForm]]], "(2) \[GreaterFullEqual] 0\n\:304c\:6210\:308a\:7acb\:3063\:3066\:3044\:308b\ \:3068\:304d\:306f\:ff0c\:305f\:3060\:5132\:3051\:306e\:30c1\:30e3\:30f3\:30b9\ \:3068\:3044\:3048\:308b\:3002\n\n\:3000\:3053\:3053\:307e\:3067\:306f\:ff0c\ \:682a\:5f0f ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ SubscriptBox["\:ff58", "1"], "=", StyleBox[ RowBox[{"-", "1"}], FontWeight->"Bold"]}], ",", " ", "\:50b5\:5238"}], TraditionalForm]]], Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["\:ff58", "2"], "=", StyleBox["2", FontWeight->"Bold"]}], TraditionalForm]]], "\:306e\:5834\:5408\:3060\:3051\:3092\:8003\:3048\:305f\:304c\:ff0c\:305d\ \:306e\:3088\:3046\:306a\:7d44\:307f\:5408\:308f\:305b\:65b9(\:30dd\:30fc\ \:30c8\:30d5\:30a9\:30ea\:30aa)\:304c\:898b\:3064\:304b\:308b\:304b\:3069\ \:3046\:304b\:3068\:3044\:3046\:3053\:3068\:3092\:8003\:3048\:3066\:ff0c\:300c\ \:7121\:30ea\:30b9\:30af\:88c1\:5b9a\:6a5f\:4f1a\:300d\:306e\:5b9a\:7fa9\:3092\ \:6b21\:306e\:3088\:3046\:306b\:5b9a\:3081\:308b\:3002 \n" }], "Text", CellChangeTimes->{{3.396422455644038*^9, 3.3964224968733234`*^9}, { 3.653107646106348*^9, 3.6531076822695093`*^9}, {3.653107733222446*^9, 3.653107754471347*^9}, {3.653107787941617*^9, 3.65310787524553*^9}}], Cell[TextData[{ "\:3000\:6b21\:306e\:ff13\:3064\:306e\:4e0d\:7b49\:5f0f\:304c\:6210\:308a\ \:7acb\:3063\:3066\:ff0c\:305d\:306e\:3046\:3061\:306e\:5c11\:306a\:304f\:3068\ \:3082\:ff11\:3064\:306f\:ff0c\:7b49\:53f7(\:ff1d)\:3067\:306f\:306a\:304f\ \:4e0d\:7b49\:53f7(\:ff1e)\:304c\:6210\:308a\:7acb\:3064\:3088\:3046\:306a\ \:ff0c\:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[ SubscriptBox["\:ff58", "1"], TraditionalForm], SubscriptBox[ RowBox[{"\:ff0c", "\:ff58"}], "2"]}], TraditionalForm]]], "\:304c\:898b\:3064\:304b\:308b\:3068\:304d\:ff0c", StyleBox["\:88c1\:5b9a\:6a5f\:4f1a\:304c\:3042\:308b", FontWeight->"Bold", FontColor->RGBColor[1, 0, 1]], "\:3068\:3044\:3046\:3002\n\n", Cell[BoxData[ FormBox[ RowBox[{ FormBox[ RowBox[{"\:3000", " ", RowBox[{"200", "*", SubscriptBox["\:ff58", "1"]}]}], TraditionalForm], "\:ff0b100", "*", SubscriptBox["\:ff58", "2"]}], TraditionalForm]]], " \[GreaterFullEqual] 0, \n 80*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "1"], TraditionalForm]]], "\:ff0b 100* \:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "2"], TraditionalForm]]], " \[GreaterFullEqual] 0, \n ( -", Cell[BoxData[ FormBox[ SubscriptBox["S", "0"], TraditionalForm]]], ")*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "1"], TraditionalForm]]], "\:ff0b( -", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["B", "0"], ")"}], TraditionalForm]]], "*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "2"], TraditionalForm]]], " \[GreaterFullEqual] 0.\n \n \:307e\:305f\:ff0c\:4e0a\:306e\ \:5f0f\:3092\:6e80\:305f\:3057\:ff0c\:ff13\:672c\:306e\:4e0d\:7b49\:5f0f\:306e\ \:3046\:3061\:5c11\:306a\:304f\:3068\:3082\:3072\:3068\:3064\:306f\:4e0d\:7b49\ \:53f7(>)\:304c\:6210\:308a\:7acb\:3064\:5f62\:3067\:6e80\:305f\:3059\:30dd\ \:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\:ff5b\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "1"], TraditionalForm]]], ", \:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "2"], TraditionalForm]]], " }\:3092", StyleBox["\:88c1\:5b9a\:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa", FontColor->RGBColor[1, 0, 1]], "\:3068\:547c\:3076\:3002" }], "Text", CellChangeTimes->{{3.653107878438645*^9, 3.6531078795826063`*^9}, { 3.653107940560533*^9, 3.653108050847711*^9}, {3.653108084570806*^9, 3.6531080984903812`*^9}}, Background->RGBColor[0.80174, 1, 0.437766]], Cell[TextData[{ "\:3000\n\:3000\.08\[NonBreakingSpace]\:306a\:304a\:ff0c\:6388\:696d\:306e\ \:30d1\:30ef\:30fc\:30dd\:30a4\:30f3\:30c8\:3067\:306f\:ff0c", StyleBox["b)", FontWeight->"Bold"], " \:5c06\:6765\:306e\:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\:306e\:4fa1\ \:5024\:304c\:3069\:306e\:72b6\:614b\:306e\:6642\:3082\:975e\:8ca0\:3067\:3042\ \:308b\:304c\:ff0c\:73fe\:5728\:306e\:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\ \:306e\:4fa1\:5024\:304c\:30de\:30a4\:30ca\:30b9\:3068\:3044\:3046\:5834\:5408\ \:ff0c", StyleBox["a)", FontWeight->"Bold"], " \:73fe\:5728\:306e\:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\:4fa1\:5024\ \:304c\:975e\:8ca0\:3067\:3042\:308a\:ff0c\:5c06\:6765\:30dd\:30fc\:30c8\:30d5\ \:30a9\:30ea\:30aa\:4fa1\:5024\:304c\:3069\:306e\:72b6\:614b\:306b\:304a\:3044\ \:3066\:3082\:975e\:8ca0\:3067\:ff0c\:5c11\:306a\:304f\:3068\:3082\:4e00\:3064\ \:306e\:72b6\:614b\:306b\:304a\:3044\:3066\:30d7\:30e9\:30b9\:3067\:3042\:308b\ \:5834\:5408\:ff0c\:3068\:3044\:3046\:3088\:3046\:306b2\:3064\:306b\:5206\ \:3051\:3066\:ff0c\:88c1\:5b9a\:6a5f\:4f1a\:3092\:5b9a\:7fa9\:3057\:3066\:3044\ \:308b\:3002\:3053\:308c\:3089\:ff12\:3064\:306f\:ff0c\:7d50\:5c40\:306e\:3068\ \:3053\:308d\:ff0c\:4e0a\:306e3\:3064\:306e\:4e0d\:7b49\:5f0f\:306e\:3046\ \:3061\:ff0c\:3069\:308c\:304b\:3072\:3068\:3064\:306b\:4e0d\:7b49\:53f7(\ \:ff1e)\:304c\:6210\:7acb\:3059\:308b\:5f0f\:304c\:3042\:308b\:3068\:3044\ \:3046\:3053\:3068\:306b\:5e30\:7740\:3059\:308b\:3053\:3068\:306b\:6ce8\:610f\ \:3055\:308c\:305f\:3044\:3002\n\:3000" }], "Text"], Cell[CellGroupData[{ Cell[TextData[{ "\n", StyleBox["9.4 Inner Products, and positions on a (x,y)-plane", FontWeight->"Bold", FontColor->RGBColor[0, 0.501961, 1]] }], "Subsubtitle", CellChangeTimes->{{3.6531088878107347`*^9, 3.653108900419527*^9}}], Cell[TextData[{ "\:3000\n\:3000\:6388\:696d\:306e\:30d1\:30ef\:30fc\:30dd\:30a4\:30f3\:30c8\ \:3067\:66f8\:3044\:305f\:3068\:304a\:308a\:ff0c\:4ee5\:4e0b\:306e\:4e0d\:7b49\ \:5f0f\n", Cell[BoxData[ FormBox[ RowBox[{ FormBox[ RowBox[{"\:3000", " ", RowBox[{"200", "*", SubscriptBox["\:ff58", "1"]}]}], TraditionalForm], "\:ff0b100", "*", SubscriptBox["\:ff58", "2"]}], TraditionalForm]]], " \[GreaterFullEqual] 0, \n\:306e\:5de6\:8fba\:306f\:ff0c\:30dd\:30fc\:30c8\ \:30d5\:30a9\:30ea\:30aa xp " }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"xp", " ", "=", RowBox[{"{", " ", RowBox[{ SubscriptBox["x", "1"], ",", SubscriptBox["x", "2"]}], "}"}]}]], "Input", CellChangeTimes->{{3.427512652982051*^9, 3.4275126567008343`*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[1]:="], Cell[BoxData[ RowBox[{"{", RowBox[{ SubscriptBox["x", "1"], ",", SubscriptBox["x", "2"]}], "}"}]], "Output", CellChangeTimes->{3.427512565717991*^9, 3.4275334115711527`*^9, 3.522377495203384*^9, 3.653108117946889*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[1]="] }, Open ]], Cell["\:3068\:ff0c\:72b6\:614b1\:ff08 \:597d\:6cc1\:ff09 \:306b\:304a\:3051\ \:308b\:8a3c\:5238\:4fa1\:5024\:30d9\:30af\:30c8\:30eb pgood", "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"pgood", " ", "=", " ", RowBox[{"{", RowBox[{"200", ",", "100"}], "}"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[2]:="], Cell[BoxData[ RowBox[{"{", RowBox[{"200", ",", "100"}], "}"}]], "Output", CellChangeTimes->{3.427512568070416*^9, 3.427533414249453*^9, 3.522377497919622*^9, 3.653108121249927*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[2]="] }, Open ]], Cell["\:3068\:306e\:5185\:7a4d( Inner Product )\:3067\:3042\:308b\:3002\:5185\ \:7a4d\:306e\:8a08\:7b97\:306f\:ff0cMathematica\:3067\:306f\:300c.\:300d\:3092\ \:4f7f\:3046\:3002", "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"xp", ".", "pgood"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[3]:="], Cell[BoxData[ RowBox[{ RowBox[{"200", " ", SubscriptBox["x", "1"]}], "+", RowBox[{"100", " ", SubscriptBox["x", "2"]}]}]], "Output", CellChangeTimes->{3.427512570683614*^9, 3.4275334163063583`*^9, 3.522377500826283*^9, 3.6531081247448387`*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[3]="] }, Open ]], Cell[TextData[{ "\:3000\n \:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\:3092\:4e8c\:6b21\ \:5143\:5e73\:9762\:4e0a\:306e\:70b9", StyleBox["(", FontWeight->"Bold"], Cell[BoxData[ RowBox[{ SubscriptBox["x", "1"], ",", SubscriptBox["x", "2"]}]], FontWeight->"Bold"], StyleBox[")", FontWeight->"Bold"], "\:3068\:307f\:306a\:3057\:3066\:ff0cpgood \:3068\:306e\:5185\:7a4d\:304c\ \:30d7\:30e9\:30b9\:306e\:70b9\:306f\:3069\:3053\:306b\:3042\:308b\:304b\:ff0c\ \:8abf\:3079\:3066\:307f\:3088\:3046\:3002", StyleBox["Mathematica", FontSlant->"Italic"], " ver.6 \:304b\:3089\:3001\:4e0d\:7b49\:53f7\:3067\:793a\:3055\:308c\:305f\ \:9818\:57df\:3092\:30d7\:30ed\:30c3\:30c8\:3059\:308b\:95a2\:6570 ", StyleBox["RegionPlot", FontWeight->"Bold", FontColor->RGBColor[1, 0, 1]], " \:304c\:4f7f\:3048\:308b\:3088\:3046\:306b\:306a\:3063\:305f\:3002\n" }], "Text", CellChangeTimes->{{3.4275125006652813`*^9, 3.427512506763941*^9}, { 3.427512576169527*^9, 3.42751262383274*^9}, {3.427513838836259*^9, 3.427513914264557*^9}, {3.522377535931663*^9, 3.522377541966917*^9}, { 3.653108133329651*^9, 3.6531081390862913`*^9}, 3.653108177975993*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RegionPlot", "[", " ", RowBox[{ RowBox[{ RowBox[{"xp", ".", "pgood"}], " ", "\[GreaterEqual]", "0"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["x", "1"], ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["x", "2"], ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "False"}], ",", RowBox[{"Axes", "\[Rule]", "True"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(x\), \(1\)]\)\>\"", ",", "\"\<\!\(\*SubscriptBox[\(x\), \(2\)]\)\>\""}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "200"}], ",", RowBox[{"PlotStyle", "\[Rule]", "Pink"}]}], "]"}]], "Input", CellChangeTimes->{{3.427512628551635*^9, 3.4275127478913927`*^9}, { 3.42753342105125*^9, 3.427533575252069*^9}, 3.427533760012138*^9}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[7]:="], Cell[BoxData[ GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJx1mH1wlNUVhxd1rOMQK0hBU6AoH11TCJFmkS+5dnZkWsZqoGDtFIPFYtW0 woSvJCCQiAuGMHylRlPGcdtiBQqRCjhAmEs6MZAQwhI2WRKTTSAbAgESJ0NA 2tpU7uU5zNxO+OfOs+x7z++e8zvnvptH5y2YOf8uj8dzrY/Hc2td9PKN1cWB 86rlyIpjPT2duurz92fGtbYKP/7dSSNS/ZeE17z6Zfee4BXh26twUv+/p0ZS omqd/Z5mf5j9YfaH2R9mf5j9x9jnZH+Y/WH2h9kfZn8465XXD/vyI6ra7iPx YOLBxIOJBxMPJh5MvGV2X4kHEw8mHkw8mHgw8eDSfaMezo+E1AQbR+LDxIeJ DxMfJj5MfJj4MPFzbFyJDxMfJj5MfJj4MPFh4sOD+x6/FPOVqkqrQ/TA6IHR A6MHRg+MHhg9MHpg9PzIrqIHRg+MHhg9MHpg9MDogdEDFx+6f0Oga6f62q6i D0YfjD4YfTD6YPTB6IPRB6MPRh8r+mD0weiD0QejD0YfjD4YfTD6esubq9Nd 0QujF0YvjF4YvTB6YfTC6O2trm4eXZ3uil4YvTB6YfTC6IXRC6O3t75wfejW 3c2rq9td0Q+jH0Y/jH4Y/TD6e+tjt29cn7o+cPPs6nZX9MPoh9EPox9Gf29z 0J1Dbt+7feb62PWJm3f3HO7KeWDOA3Me5z1H9TbH3Tnqzi13Trh96Prc9Y1b B/cc7sp5YM7jvKep3u5F915y7wV3Drtzz50rbt+6feD6yq2Ley535XzOe6fq 7Z5371n3nnPvFXeOu3PSnUNuX7t94vrMrZN7LnflfL29N7nvMe57hHuPu/em e0+594A7Z9255c4Bt49cH7p1c8/prmUmfrMab+J0aJjfEzVGf71abXS16R8Y /WFVYb+nq83/V6gf2s/1CcOH1CW7ao/5t6fY/Zx9ztvnJS77rLDxVKONr5Ot PoUefi+wD+/X6KFuxKVO6KEu6KEO6CHv6CHP6CGvUZOnJtX3tQFb07yd2mt0 1akXDp7uLE+7qNONrmr10f0bn/UWndPLjK5jKmz2q9EDzP77VMjEP6oHHr61 f+H/fc4+TxldVZq47LM9rs/aYPEFlWt0Neg5xf4Ef+ZVqW+90d0u54Jz7PfV PfP//GJXfLvUe4SJH5N7Ha608dRzB+buT0ltkfyTF/IIj7F6VZLNi9SHPNMP cIk9rwrYPEn93LrBHxouVKx8Thz6ER5n8yq6qD/nxicwOsgTOofZfMg8gLNs nfSN3yQNzYxrFf/U2nyLL2HysvvBRSXxFZcVcfZaFh38XsVfO2y9helP6vNv G1/qw1zDRxesf4TpZ/KCj8gb58S/nBPmnNQPn1I/6oCvqQNMHagjfUA98Qmf EwcmDvuii33xMf1EnmDyRL3JK/Vm7nKubbafhekz8jLd9ofkhblMv86080GY eYcfPLYfpY+Y19Tl9rwRZj6ig7/XMCfm2nkgzLyH8Rvnxj/4gzjklXNTP+rA yvfIL/vyHPnh/JwX/fiZeQXTH/if/sC/1BmmzvidOlMX5hWM/6kj/sdH+BDG h/gOH7Iyr2D8zXP4G130Ccy+nIO45Il5BeNf/Il/8Rd9DHNO/Ege8BPzCsaf +I+5h5/oExgd+I/6cT9yLu5H8o8vyBM+In/uHMGnnB9fcz7uR/RzP6KP+5s8 8n7BPujFb7xv4Gv0Uzfyhi7Og5+om9snrm84Jyt+wbf0G3HwB33DvpwDP/A+ Qz+SH+rP+w26yRf15v2QPiZ/T+xYWZD2SYPMn+X/mnyt/HKN3F+5BV3BlNQq uY+GTvrDr+Naj4ovc1un/i0l9U/SB8v6TH6lK36f9J03+lhGceCY9PmJIbOa elZVi++yK9/LCU6pk3n75PK6kf6bTTI/x67u925gXKPKLfrk5UjSVZ15uqo1 tqRWhT2vHvEtvqADzzz8TiD9lJr412nJ3gVNOv7ilqn+myXq5LSSq7Hu03pv wvjmnp6gyt7euS3QtVez8r3EpG/yA+llsi/PpQ9KGJh/45x6u/vuzYF/nNXe st8f9O27KHHOLy6aE1nYqUbPaWiMdX/73rF+0X7ftXY5p/efBW9ENrXpxz/u +1JXYUTm4dLdH0zyTwyrUENS//wnYzLP0h+afcwXbtaLbpQfTImGZB5mf7M7 0X+zQiXbOJLXjPIRP/WODeuszQ+MSfWXig+8T88I9fQcUpvtc/L3v8RP37o3 P3JIjwuNKEzz7hLf1W+7tSao+rNm1dQx8EXBQ5lxh1XO9q9WBYt3is/zfKU/ i2s9pIdn/O5y+eU7fVH1XNr64JSwqgpkf5zmLZW++rH9nl75yMQp3s568c3Q F75+rau+WQ1Jf3tpJBSSPg69cf39wLiwXjx5bokvOSZ9Gb5nct/8gjZ1ZljZ I5kbIjIPA3ZfndAe/G3kq3bxad5nbxX5ZnWod0/ddyR+evTOPLzdZ9GF9XGZ P+/QTbOe9+T/MirzLzKj8Yv46XUyT5gfOSZOu370L4WPZW6olnnCOSuN7pgO Xyz6757gMdHN/Eg0eajXpwbOXhhJ2Sd5I69rTF4rdMKm2vTiQKF235vrd93i SSp9bHM4vuKo+Ebmh6l7hWrOm//9VH+VzBPmxxrjh3o1ckn3pynRGpkn+CbD +DKmvhw+YVZXYYPME95nEo3/2lWD8X2Tyuu7/HjPgk69zuT52zjnB6wNzOzQ o0yfnFW1L00YmfrZRV1t6hZRo5OrW2J/bNMLTV+dVsOKurOLr5/Tg40PQmrp Oxuf9tc166WmD8tUrenvWn3C+KpUrbR9o/ubvt2rTps+LdHLjE93qWnW93qT 6e+gfO8p4/ud+k3rW3kOHStMH5Xq49Z3aqrp71Oacy42fRnS8bEjnbGaZtE1 6vXCGXFLLqgE0+cRHdri2RrY0qbyzJxq1A2DGq/teeKqajY+i+p1P/GP9z7f oaZ5NiWn3n3n9zpzPm/wrqXB/3RKnfi9x3xJtP6WPuP3HfMkw/aL+IC6MT/o E/oaXzAv6FN8Jr5jPtxemSP4mnlAHHxM37Av52BucS/R75V2Hkqf8HsL3Tl2 vqqcIQ+sD/RvUEn7667v6XdF/BW2+deVb55oi82uUVn3Fvwibnar+GuorZ8e be6Tk1In/IWOleY+0eID/MU5t5r7ZLPCZ/iLPI4398kB8TH+ok5rzX1yXPoE f6Vb/6usHaWXY987oyv63VxVPLBF/OW1/aOSXvzOxkB1nV59dPLw1DOXxF/N tv8U/Zhr/abD3oWf+8J1KtE8d0kPzRozIH/QGZVh4rTo0Hs152L7j8s9V5b+ 0Xh/5gG5F1OG7fhVXOtmuUc77lrSUp6m5d6NRdUE79iTmnva++E87ZtVc7sO rSr67PZ5kQcbtK3bFfU/LKgnhg== "], {{ {RGBColor[1, 0.5, 0.5], AbsoluteThickness[1.6], Opacity[1], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNmAnY11MWx3/XVohEKCIltKdFaY82RbTRikq7KfsSyTY1KOswkUGi7Euy 79sYYzaDWQzGGGNm7EuGwRhzPs7n/7w9z3ve87v3nnvOueeee7/n/ltMO2b0 /I2qqro2/m0cfEKpqoODfhHfI4IzVj9oy6BNgjYN2qJKWdr/DKoXtFVQI8eQ 3bzKucg1VAd928iR+ySoc1CvoJFhq2vQL+N7e/VtHdTEOeh+L2i7oJ2CdnC8 obyeNnZWpnHQrsrtGNSlpE76m8mxs4u8JtdQe81tY3+fkjZbBu3hfOa10h7t 9kG727en49jfS46+Do6jo21QC3V+6HeboI6Oo6OTHB3dtYGObs5vFzQ6fOsZ 9Ov43rekji5Bo+K7e9Cv4rurutvq4076vY860NtD3djfV97JfWpkTHq7X+jv q1586SdH337qQscA/aY9JnzpE/Sb+B4a1Ecd/Z2H3GBzATtD5H2kLto7wHnY HO587BwcNDBoUNAhcvQd6Dh+9S6pn7GRjmNnjHqHSf3UO8px/B0tR26sctg/ VI6dsaG/f9Bv43uKcoxPCBqhjxPl+PhF0LigaUGT7MOvw7WNzcn20T5SX9F7 hONj3MOW7u1R6hwfNFc55s1WF7pn6BO+zJRjf7rzGJtlH3P6lfSfsTnqQO/R 6math4bM/kEvxvd694I5+5Vc3/ygY/UPOydoGzvH6xPt04LmKX+i4/h+khz7 pzt+TNAprhNfTnac9kLHsXmG/Ligc5Vj3tnaQPcix/HlTDk+fqU/C4LOso85 5+krvpyjDvQeFusdHPS7+B5Uct6SoOuDLgv6cdCP1Mf8oSX7VwYt0w/sL9Xv Rc5ZrJ4LHceXi+Ss43LH0X2JPrHWix2nfYXj+P4T+flBP1UXsiv0AzvLHb8g 6Er5UvtON8ZX2bfM8YX6fbU60HuNuvFrXKz3gKCX4nuVa8P3G+T4+GzQvUH3 Ba3WV3y50XHaN+kT9tc4Tvtm+1a4n+QauXWb68SX74KuC7oj6E6/if/d7hN+ 3a+Nm/VltXbWOo6/98jx61bXjI119jHnLnVf73rWqPcBdd8S9KD8VvkKdT1k H76Pj5gdGPRyfD+u3+h+Qo7vz+k3un8uR/fPtM3YU64B3590Hu1n9Ju1Pu04 bc4Q55dz+7z68AusrWEv9QK1AhgM5m/u+PCSMX60yjFkwWDqBmoEsOVfVdYQ DaqsFbZwfq1WwMZjG+zVHaFzfdBrVdYL4Pp26gbDt3fOjrYZA+vAvPerrCGa VnV1AGPgJBjfQptNNpgPdu9iu7ntAVXe98PVy73bUn1gNxj/UZW43rpKvWBv G3XtqVyt/mjm/HbKMQb+dtC/VtqA2ivXyvH2VV2dsWdVVzd01B6Y2UU5MLaG +fBujoOnfdTXQ7laHdCjqsN45MB/cBkc/bTKGq6n+vor190Y9XcOmDm0qsP1 werdTznqArAZzKCWoY6p1YXIDjIuNX/7qG+I9oZpo797Qnsr48s+f14lJh1U 1dUHB6t7pG3mg6U1nIePUtdYx2r4PUHbo5wP5oOR4O4Ix8HKgc4ZoY1Jzmce GDpZ3VOqxNEvq6wJpmr/COVqdQay2OAsTqvq8HuGfkzWBranKzfB8emOzXIO srNtY2POBm3w7QR9AlfBU7AdLJ9X1eHxifrBHTFfG9y5NZw/1rGZ6qvh/PHK dXEve2v/ZPUyBu6d4XwwBbz5uko8PrVKP8DPBfp3ivPnK3ua8Zur7lodsLCq w/hF+nWWbdZztm38OMc2es+1jV5ws4bh8CVVHR5fqP3zlcPeBbbRdbFy2AYz azi/VDlsXKLct0H/Dbq0qsPg5VUdfoOF1AVg6GX6cbntM/VlmT5e4Ri2wair 9Wm5urB/lTaYs8L2hcqu0KdrnA+OgSn3KgeW3aQfYN1K/Vhlm/m3KFfD+1Xa Bidr2H6jY1eqr4bta5Sj735t41cNM2t4vFZ74Bq4WJXE+9urxPnvMcQ13Ob8 lcoyRm1CTXad/q1VF36t08Zq173O/VnsulnbA/o3JHTsbB0IboOFj2gP/HxQ e2B5Dd/gj1Z1uM4YtSR15GJtg81PafsZ2/jyrG1sUweA+X8JeqXKN/UhoWNP 3/W1+uA5/Xje9lp1Pxn0RtALVcrfpz5s8PvACxnWqlv829g3+5tBv6/yvXm3 OlhDD+oC36F/DfpDlW/VvtHX0Pfg34L+VOW7aVj0Nbc+/EfQ61XWPO9Uifn0 vx30apVvjQHgv2+uvwf9ucqYD4y+HX2P1Gos1n1Q9O1uHUWtjjz3Cb8/ECvq EN7OrIU6oVd8b+n7mjcOdrmfec/+sUrs492H/+AL73HWCO6Ps07h/L5VpTzr pZZjXeRk65KxJs6bltwz4tmo5BzktyoZO3xo4z5SM21fMnasvWnJuLDeiY6D gS1Kxo647VIyRsTn3Sprrwbq5Hsz9/AD1w5/3+9XnIN8W/edWmqPkvtEPCfb R03UrmQNtJvy6NnWfvKB2ugIOXXK7JJniXP0cZVzieHeniPGPquy5iDmU0rW HtQIHUpi/P5B7UvK7G28P1Oe/fm3ezStZD0wwrkNbXc0l8Dg6XLw7ZsqsYc8 6WRegUP/qRKzpzqX78Oq3P+P9f9V5abq25b6PVMdC9SJ/h+Yv99o639VYsCl xoHvHwY1Lrn37Htnzwt33GvOQb5wQEvm2FzH71Ce/murnLebZ20T95Q9Yg83 tq6Gb+IZZw83U6aBayHO9YNv7hmv7/6y7+wt3y3MtY1K5hh99ZVH96bqZ8+3 cC4xQn9neQPP4Ouu7XZ92Mp+9nxr/WE/t/FugTfyu4l7R5yJPd/z3MMdSu5d Y3OAb3Jq25J5RV9jY/6F7XHm1OfmFfqaeOewV7uW3C/6mtrPPu+kD9uYe+hv VvJ8cjbJdXJ+sbyZ/c08C+jczX1nH9e7ZurN79zX65Rp4f5SV3M3kZPcf61K nlk47YervFfauEf076HMXt45m7mPbbxf6GOMu6vWrmfOtDVPyJm23gufe97W u1/tPQvkQzv3nRxo572A7tbqJwfau79fe2a+ct0dNtijju7dl57JL9yXTsac +O1tDNHZyxzD527mPPHrbGwrv4nr4SXvON6Kk0res12c19W5EH28O7o6Rm5P Uob7c2rJ+6u3ZwN9vP/wpaf+HFnyfuQthF3eqNzD8B6enR72tzCGPfz+1vuC PEIXOrqos6c50NO1c3a4r0b7TQ7hF++ko0vWLpw13mh9PUf4T5t79aiS92k/ c7mvecjZoG+8MWxpPHkrDfAcbec3sjNK3rm8McBu3hucTeqowZ6FWSXvTeqh GcpMrZIz50X9wUbtPA5UD4Ru3gfoQscSdaKf+xaOPc7aAPWMM2eG6MOcklhF jcg39SL3LZza5SXPF3UG9d488q7k7yMH2v+yseVepi5s7lzO7EHKMRdinJqw rzEntpwx9NU3H0aZG9R4/BZTT7t8x9/3evF3ZZU4PtKc5Lweojy5OdL8PNh+ zh31wCjzbZjrRR/vYd6HR5gbY8yHRcEvK3VYdpjxrOF9a/OR7zb2HWk/53mm e4GdccZ2f/eb/QPjxhln9uuwDeTnuC9g/VhzjD0caz6AxYeaJ+g81Pwh3uPN c/BlvHuEL7M2yI1Z5h46jzLnOcdTXXsfvzk/3HHTtIsc39Qb3HdTlB9kPi/w zNHfyzzlLEzznBKffc27OcZkqG3qJc75bPunGyvWVatj+KZmn+Cect9wj1Gn wQ83f/hd7U5j/GnwW0vGbLi5eod5Rz5vZNyONocvCnqrJF6SP/PM+UuD3i6J r58R45J5cQ66S9YEnwfdXTL25wV/o2QdsBhfStYcS4PeLInxlwe9U8RRbZHn H5DjJXP8k+A3mwvkNvcv9/JEv8nz91x/U3N+gnq6GxPiBK5NVL42n7qaeoc3 D+cCbJhr/nwcfE3J2vOj4DeWvF+nmTPkw4fBV5U8WyuCv1vyfpxrPNGzHNsl awh0cb64e+8yXsTqNmNKPFeXtI3s9SVtoP+WknvJPt5Q0if8OSn4mSVx8OTg Z5W8n68rGUdi+GzwZ0rW9zeVjCnxXBv8uZLvlvnBTy1ZGxwb/LSSOH5K8LNL 1hUnlrwXuBOOD76wJF4fF/z0kph+QvAzSmL3/cHvM77HBF9QspZ4OPhDJd9F 6L5a/dhcol3WcaVrYX1XuMZ7g68r+b5C37nqxPdr9B9fztefe0qukzXi18X6 hu/L9P/x4I+VfHc9GvyRku+xp4M/VfLd9WDwB0q+354M/kTJN9j/AVvHass= "]], PolygonBox[CompressedData[" 1:eJwtk9dOVlEQhc8QIEDAAEGjRI0YjVz6DFx75YUP4LUB+wMoNmxgwY6KHRSM vStgxYZKExRFiiJGo4FoNBq/lZmLL7P2+c/5996z1hQtLJtfmpIkyTxIhQpL kivwHp1DPQCjMAfSebaW+gYyYAbrVuojvYP+AqvRPZAK+ayfUB/DV/Q3WIe+ BO/QmdT7cA9aWb+Fzehr0I/Oo26APsiGuTzbpLNBLpSwbqM+hzH0OLSgG3VG 9DDUoM+Z/3cx9TwchHbWfbAP/RlmaV/W5dQL5r+lUbfCByiABTx7SX0BP9G/ 4Bn6KXxH/4Dt6FswgJ5C3QaDMBkW8ayd+gp+o//AQ/QD+IQegUr0De2Jnkit M99Te72Gm+hT5lp77Na38gJqEvdGPc4Mj3qhLLxIVx9gcXiXFd6sN9fyqJPa AX/R/+AsuhsserqTOgxToZz1afM76S490GD+H/q2N3HvlKmc8FDZUI/TIiPy Up7nhae15plSljrgpLnH8rYbjpv3XL3ugqPmGVO2OmEPuhmG0EXqE5RGdlOU O1gSWZoQ3m001/JQWV5j3itlWtnaov5FxvZT75pna7ZyCksji3pHs6LMKWua mSY4Y94Lnek6+oT5XeTxVfQx87v0wyHzTCgLyuhtdL15bwfhMvqI+V01o8rO KvO7KUPyqguS8OwiHDbvpWbuI3pFeDc9vN5lruW5vK2GaeHxCKyMbM00nxX1 QHfXzGgWqmCS+Uxo773m7+oMyr5mQrOgGRiAZeazpG+GYLn5bBSaz8YOc60Z UbblqbxUxjWLmhHNRkGc9Y55b3Tm/5t4uXM= "]]}]}, {}, {}, {}, {}}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwt0skz1wEYBvAf6dTJza1pOji6du3sZsbduNakSLKUpLQgSiplaVERKrRQ 9j1kaxepUJaQ6g/o851x+Mz7XN7LM8+uxKS4A2GhUKiR/UKQh+kXBmikiUpW qeAowdMnTjLIEDf5RRXNPOEU0+SSThKfOc0rhrnNGrd4yjPOMEMeGRxklrOM MEo169zhOS2c5wvnyOQQc+TzmjHuscFdWnlBIV8pIItkvnGBcSao4Tf3eUkb xXyniGOkMM9FJpniAZvU0k4HJSxwieMcZpHLvOEt9fyhjk66uMIPSskmlZ9c 5R3vechfGuimhzKWuMYJjrDMdT7wkcf84xG99FHOCjfIIS3oyz52Bx24bbTT QSdddNNDL33BlhhgkCFaqaOCYnJJYx8JxBPLXvYQQzQ7iSKSHWwngm2Eb+33 Pz+Kc4E= "]]}}], AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{Automatic, Automatic}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{ "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True, "AxesInFront" -> True}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.427512734110944*^9, 3.427512748678646*^9}, { 3.427533430191739*^9, 3.427533495998435*^9}, {3.4275335534085073`*^9, 3.427533576472682*^9}, 3.4275337610780087`*^9, 3.522377561093072*^9, 3.653108312535613*^9}, Background->RGBColor[ 0.8416266117341878, 0.8416266117341878, 0.8416266117341878], CellLabel->"Out[7]="] }, Open ]], Cell[TextData[{ "\:3000\:3053\:308c\:3089\:30d4\:30f3\:30af\:306e\:9818\:57df \:306f\n", Cell[BoxData[ FormBox[ RowBox[{ FormBox[ RowBox[{"\:3000", " ", RowBox[{"200", "*", SubscriptBox["\:ff58", "1"]}]}], TraditionalForm], "\:ff0b100", "*", SubscriptBox["\:ff58", "2"]}], TraditionalForm]]], " \[GreaterFullEqual] 0,\:3000\:3059\:306a\:308f\:3061\:ff0c\n\:3000\:3000\ \:3000", Cell[BoxData[ FormBox[ SubscriptBox["\:ff58", "2"], TraditionalForm]]], " \[GreaterFullEqual] - 0.5 ", Cell[BoxData[ FormBox[ SubscriptBox["\:ff58", "1"], TraditionalForm]]], "\n\:3092\:6e80\:305f\:3059\:70b9", StyleBox["(", FontWeight->"Bold"], Cell[BoxData[ RowBox[{ SubscriptBox["x", "1"], ",", SubscriptBox["x", "2"]}]], FontWeight->"Bold"], StyleBox[")", FontWeight->"Bold"], "\:306e\:96c6\:5408\:3067\:3042\:308b\:3002\n " }], "Text", CellChangeTimes->{{3.653108209326695*^9, 3.653108249333227*^9}}], Cell["\:3000\:540c\:3058\:3088\:3046\:306b\:ff0c\:72b6\:614b\:ff12\:ff08 \ \:4e0d\:6cc1\:ff09 \:306b\:304a\:3051\:308b\:8a3c\:5238\:4fa1\:5024\:30d9\ \:30af\:30c8\:30eb pbad", "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"pbad", " ", "=", " ", RowBox[{"{", RowBox[{"80", ",", "100"}], "}"}]}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[8]:="], Cell[BoxData[ RowBox[{"{", RowBox[{"80", ",", "100"}], "}"}]], "Output", CellChangeTimes->{3.427512862929331*^9, 3.427533595037092*^9, 3.522377569757184*^9, 3.653108261953451*^9, 3.65310831801917*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[8]="] }, Open ]], Cell["\:3092\:8003\:3048\:ff0cpbad \:3068\:306e\:5185\:7a4d\:304c\:975e\:8ca0\ \:306e\:9818\:57df\:3092\:30d7\:30ed\:30c3\:30c8\:3057\:3066\:307f\:308b\:3002\ ", "Text", CellChangeTimes->{{3.4275128134592743`*^9, 3.427512835691883*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RegionPlot", "[", " ", RowBox[{ RowBox[{ RowBox[{"xp", ".", "pbad"}], " ", "\[GreaterEqual]", "0"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["x", "1"], ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["x", "2"], ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "False"}], ",", RowBox[{"Axes", "\[Rule]", "True"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(x\), \(1\)]\)\>\"", ",", "\"\<\!\(\*SubscriptBox[\(x\), \(2\)]\)\>\""}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "200"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "0.5", "]"}], ",", "Blue"}], "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.427512857181445*^9, 3.427512879461773*^9}, { 3.427533718172749*^9, 3.42753372088011*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[9]:="], Cell[BoxData[ GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJx1WHtclFUaxsuWqdOasVqTl3JNZ70UXsbSVd+MYot1FcnMSEfLyhK8LIpK uV5AxzI1dcfFTE1csc0CvCCmjR4wRcHLjggMzIIM8A0MDEhO4aUyWs/Xc+b3 e/nBP+f3fPN9533f5zzv5fDYG/Mj32obFBTkaxMUdHetOrHsbHNzIw3+/ai+ ltBasfrt/zWlJddT/tFtkQaPR+B34D/p79GSmTdX2q2V6n1gvA98Sf+Onu76 lcUZcVV9D4zvgfE9cIi+UsKsd78x25xiob6vwtgfGPsDY39g7A/8nr7ShYx+ D9mcDmUPGPaAYQ8Y9oBhDxj2gE/rKw3sfK5WM59W9oFhHxj2gWEfGPaBYR8Y 9oF76CvdOt5xg9W/X/kDDH+A4Q8w/AGGP8DwBxj+AMMfYKx2fSW+wl9g+AsM f4HhLzD8BYa/wPAXGP4Cw1/g1njkfgLzFf4Dw39g+A8M/4HhPzD8B4b/wPAf uDUdch1wnrnfwHxFPMCIBxjxACMeYMQDjHiAEQ9wa3nM84rrmuuGnwOPA5iv iA8Y8QEjPmDEB4z4gBEfMOoo7LRWF3nd4nWE5zHPE647fm48TmC+In5gxA+M +IERPzDiB0bfwb7gAxh88L7A6zavo7yO8TrB847rlp8zjxuYr+ADGHwAgw9g 8AGMPo19wA9wa32X90nex3hf4XWd101eh3gec91zHXAegPkKfoDBDzD4Af5A /131IfAF3Nocw+cSPkfwPs/7Lu97vK/wOs3rHK8LPE+4TjgvwHwFX8Dgi2HV p8EfcGtzIZ/7+BzH5y4+F/E5hc8JvA/zvsb7Aq+jvK7wvOI64jwB8xX8Mazm GvDH52o+R/M5mc+9fE7lcySf6/hcxecWPgfwPsr7Dq/DvA7xvGtFVy144+tw uf81Wint1ogi6W8d9ZV+amKZ/pzypJ9uVYeAH9XfozL5nUsU6iv1l88LVF3H 773151QpcZ7I11eqletxNccBn9dXCpJ/aXb+HPzid74v/IBdnCcw9xtx5+jx KT3gd/CEuF06X4on6A94hM6v4hV6BcZ70CH2hV3EAZ0hbugM8UFHiAc6gn84 N/gDnUQeu9yYG+2lCZkzjkRYqsTN10N6xRs8VC39LBeD5fuXyCr3OyuypZ0s GirtZoj3pN/56r0QuW+JuCDtFVL7t/ZM9Rvr1L4z7KEDQuMbBOymGNqsTbZX 0+6OH483pVeIcN0PWid5LBVLdLvk0O2KYN0udfvmblzbRYFuR8TqfqjvTLof dLDLwmxjnk/ATud3gv8ZbWoUQbpf6jwYVuf82/s0RfdX6QK8A0NX0CHXLXSK vMF3wMjzqzrviscdOi8KI+5dcr/txFfwmKDzoM4RGPHj/KEHnAfqAfIA9QM4 VeeTftLPU/kNPmAH54K8QV5Cl8DQyRhdP+o+Cv6gM5w78p/nBTB0Ct0gr8A3 dA6eERfyDv0B+AtdN0qX4AfvTdP1rN5DXuNcgeEH+EAfgU6RR6hLiBMYcfI6 ibxAXoJXXmdRHxAv6jLOETqD7lGXgFE/EC++g/84P/gD/vEe+IN+cA44f5wb VtQT8Ir6gXPh/QUYcUB/0BHvF8DIG+gL9ZPXf2DkE/QDPeC8kS/AiBd5ifPH OSIfgMEHeGxNB8DgC/WP923oFBh8oh6CT9QvnBPnD7yBJ84X6gDqL+cH+od+ OB+IC3ri8UO/eM7jhT6hN8TX8LtTx422wBxoXNvlVtrrvhb3tpCS2iGWxArR obn6fPOKshb32L49V/aw/LtMpOy9IszBhSp/kYcPNG5OjTZliR77P9mcbD/Q 4v9pb3T98n27NUUUffi9WzPnqu9gZ9K34zIjruZTx7pXw02NLf/fsHHq1jtp 44ppdNKsCMPjNcovzBvBtC852ltN1zN9m6MdjdS72/lX/bG1IqHn/R9Zu9ZT QdDbJ8yLqsX49uu+T7teRm///aN+lu+dIv7yJY8WV0QXw7IbtKbLovuAR6pz fali519/HBZ6+3N6IuSOzRqbI4zeLWNDb2fTu7M/yIzIrFT7YN/Y7gO62W5W UIR83kBvyv1rVD7EzBsTb6+uFhnT//B+8rIGVVe6fJaTaR5eR/X9O2eZf9AC 97w5N7ZZh2pi5YFOcfawWnXOE9q1ne/sEpg/jdqJRq3QTdaHR442NbrE/XI/ F12T+xWIXlNuveN3uVvMRW37LHjL78oXzkllZ4zhJap+bCqgMaHH8qmN5OGi 0t1q8+kXDZ48sfBm7rGIqw5VV3uNmvuawZOl8tdVfHcdIFw75Er3yn1OiFTJ 51FyfXn3+Sg1F0D3B4eYJ5qezKLYJ90FxrwslXfw47D8/mzg/0vPTHI0N+dR z9jExU6HQ/W/VRf+lZA8ukTVh8VrPn4mtMQtBk0rLdOaXNTBWDfZsFUTlfva p0YvdVPsgy+fNRe4VR4iL4q/iIwyrKmgvVmWi8aOHlX/wlakbrZGekXUd4kP 2pZUqbxamvrJqNCRGhXNfedKM9Wq/tnhkdgSLa5B1R/0wxdOJByM2OgR3pJ7 /LkDA/Mv3vvlsbvnUykyB93xaU2B/zNh30zxY6FxQMDvpskTesZvKFRxfy1/ d4gE28rZzojcFnNCuMzHM2KROLzL6j9AfO6IlL8fUfVnc9L1k2bbEXXuz97o Pc+56QxN7L1hmf2eQqUT6ChDnqeDDsXv/sAaW6Z0Bx0+J78vVLq2bJr1S+5A t8qLn6MMfeLLKmnec3On+KN8qk5hng+T33uo2HxfYfNLXjo30uQwLq4Sy8de /iltXC0t/fOMbPNwTUQl9KrVtmq0aazjIdsStwiX+XmR5sj8PCti5Pk7aNjS 2b5cX57YFnNyrdV/gnrc98oWq/+oiJH5nq++6yvzySFW3Ul9IvR2Hs25NH2j dahLbLm1yKs1FdBy75yF9qF1YvnV2e3SmzQqLt8z3vB8rbhQGtLV9pRGP3/6 8gzndw0is0QcN/9QQ/3e3T7JEPf/PpTetMp+o0JUt3MG245WUuT5+hGmxjKx WNanHLos61O2qLne/nxzcypdTOwy0eD5XBTJ+lMkFsj6c1l9N3O/qUprclLI kZIbaQ/UC9hZYNw5zPTfRrHj0MNfmxcF/v9y6L6IM8btgXtzhuNQB1tSrVj/ bep0p/saFU1/+nHLYa+6D+wN7puYXB+4Dzwh+XOp+R95ruYCyZeL6mV9Lqc+ sj6XiFg9P1X9Mst83ylWyHxPItQRrMaNr8z251SITTPCs4yxpdRLr38qv9Fv q9cOKmwmr2ibm2Q3rrum7i/oK1uqo1Ynjy4WyYW+Cf7tgfsG8mDsnuXPm9JT aMFnnTulJ+9W9w11T/34+Nbo/5TRyeXODukVgfvGiNfic5vLrwlTTswxc4aX dl9fPM25KXDfwP1jz9+yydToVfcPvb95abL1B6MlMXAfecFS96jljz6aGXzs pDnDI+q+WFyjrfFQ2qkXEu0jKn7rb6UEHXz13OH90ecqKMa/ZaRpfqlo/9La B2xJBVQ9d/Z3WpxDrJf1/ZSqyyNkf8sUXWV/O0irf948yW/cRSHxieeMeUmi ++D1Y0xP5omaT8JGht4+TeGy/hWLqbL+XaFLUTl1WkqVKF2UPs25oJzOvTi8 U/zFchGWmODW4kro/qwP+1tm1Shdxyy6M9MZ1CC2vfyXCIO5hk6WDmlKa9NA YQ1d7ebhNeLaxG7HzZOLKaP3Iz4t7op4fti8eu3IKZWX28Y9+5JhjUcEDfxH d9tTFbRuWvGa5DdrVF9+9Nsfl9v3VdHIvWHDTfPLRUfZD/PIL/vhaZETu3tE aHwmrUpp3GH1HxQdZT8oEG7ZDxx0dXzKG84upWouuJD96SljH58oPXBvz/gj HvoVrZbrWA== "], {{ {RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[0.5], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNmHfgldUNhr8jAgo4AQEVBREEZctQ2cpQpiIibsGFVhHFhXXgwIF7IiCI iBMctdaq2DrqttRtHUjVOtBO29ra1tE85Ln98UfuWTk5b3Jykny37ZQTx09b r6qq8+OnXrT/DfpP0ItBmwZtGNQIKrneIKhJ9BsHvRT9TYI2kO/loPUdbxzr GwX9JvoDSu5DzqDoDwzaJmhljBsGbRTUJ8a9g76N/lZBmwc1DWru+sZBvUr2 mwW18GwwbuE6482CZ9OgVxmXlLNl0NbKY2/fmN+JNui5oJ8EPaiMhuLfxrOR /VpQy6C2QYNLymsXtHv0hwRtF/RGjNtUKXd7z0SPzs6zt4M4Wge1d702buZ5 XYO2U35T8Ae9Gf1txYLe3T0DGd3kZdzFc9jfw3XO3DVk7BL0ffR3DtohqGNQ T9cZ7yJ28O6mLLAcGDQqaHTQUO5Ju/X3bLD0k5fxHkG95RvgOliGuY9zBnk2 WAa6zniLwNg86O3oD5d316DfYvegsUF7io8zR7jOeKSYOHMv1/uLfYDnjLbl /GFxztCgDiVldFbnZiXx744uJdu9g/apzQXtJz7On6BujN8NGhN0SNBE18G7 vy249tWO7DlA3GCc5DrjQ5WDvocHjRPDMcpF3uR1cE2xHS/t4RncK76FLx+m PGQdKQ6wH+EexkerG2cc5TrjjsrAB6d6PniPtUWP84KmBZ3IfZS0AeP+0e8X VAWdItYj5DtEXU91DlwniRW9p7vO+GTn0Pt08YG3Vcg9Ptpzgm4KujBodtBM 7QXeM+RlfJrnsP9M19Hj3CrlnBC0FW88aFX0f+z6cUEzPB8dZsmLjuerz3TP PlneC9WH8WXiANdFrmOPi22xwQXKYM+lYkXXS1xnfLkywP5B0FlBVwXdKA5k 7BnYRwTtGDS8pG2uCZrrOrjmiRUsVygPXa/TFuh3rXZlfIN3zBnXu874+Spj 50+D5isPnR4NWhp0u3S1GJaKl/HN6oauC9zH+LagK+W7w31gWRQ0R1sudB/j W5zDNsvVE1+4Tz3ne3/4KfHsLvVEjzuVzfge9cSWd7vO+F7lIatl2LNF0HvR XyYv5y32fGz5O/EvCbrf8xdop4Xq8ZC4F2u7RY5XqDO4Hg66VTmPOwf2R7QR tvy564x/KW70eDbogSpz2zPiYPykuJe7drOYHhAj48e8M3A8oTz2POU+7PEL sXDer7Q1Zzzt+n3eDf6L37+gnug9S9tic+oA8i11w6+rrCHW1gTWAuRv6gVq CGqMV6qsG5pUWS9QE5DXkUH+r+VwWmoF9mzqGmNybC3XEtNau0ZeJb8ii5xc q0Fot3RPa9fIc+SWfp6zRVVXK2yr3NerrBvaVFmPUIu0qrJWIEe3VC55u52y ide1GoG2vWuc11W5HeV7q8qaY0cxtlcWssljtbqDlrxOnULtsp183deRix7k 0M2tEXp7Bvm5p7J7uIc6gvqpj3LJ0X3F21O+Lsqr5dVd5SOOE9umK2uAdmQf OXmgZ5O/yLXUAuTjIWIkP5JHOXuofJw9zDGyRsrHmeTfWh0xXL7dlDHC80e5 h/3kQHLhO1XWHGPEQW4l11IvUBOM8+zxrvUQ+7p1xijPm6Bczt/PMWdPdFyr DyaKe5Jj9hOrDvAc8uMUMZETyZ1jtSljMB3u+P0qa5GDq7r6oFYvTJZvpLIn ie9IzwATubKW/49yDXzHuAa+qY7xp67eea0mYK2FOf94zznONXCTK8mb1AXU Cieow3TXwEfOxFduifUvgz6rMieT788WKzmxVlPQzvAM8tiZ4j5NPnCQx85R B2JSrY44XT70mekamGa5p5anLxIfObBW75wnH1jJq7UcfoF86DHbtRnKmC2m S5RL3lhcZfyfKvaZYrpUPjDOcby6ytx/pbxXKAMs5CtiK7mf/El9MMI64Grl wnuZuhGDa3me9hpx36gscJP75roHjIvUYZ5r6DTf8RnygXWyOp+sPeYqF33I M7Wcv8D9c5Rdy+0L5eNbk+/P+tH/sMr8Sl4kx5B7nhYHeWe5OpC7anUH7VLP Z32Zut4p3zxl3avtyGm1GuEu+bDFPa6B9X73kHvJwQ+LlZxay6UPyIdO5L5a /n9QPmz5kGu3KuNnVebyR5R7peMl2m6ZONDnUfnQ7zHH4KMOqOVn2sfF8Yz2 Yv8T8iHvScd3yrtCW2DXWs5/Sj50elZZ6EH9xzf034I+rjI3o88Lrm1d8r+E etp6hVivUofbtMVzyv0q6KMq64DusXdb/2f4ssr6oKHEOjl/L/9HILe38f8G 8na9krUCdUKbKnMxufHvQb933DN4dvB7849V5mx4/xH0SZX59eugT6vMB9v7 LU6OGuU3Pzmwfsl8TC4eIy+x+V9Bn1f5Vv9ZZQwjLjcsGaOJzx2tJYlPO/O/ hN8dr4sVnH+uMieN0R8+0H4bBu9fo13DWknZxFfmVsuLX/Felng3H69jP+y8 vutr5H9N+7RU/0+0yb+Dvqny/b2rLjVdsc9g19coD9lfKP8V/WOlvH+S/xPt 3kZcX4rtM3Ueo/3+UmUcA9cfxIYvfKUea9QZ/Lx3Yh0x4C3vEj3e9w7eVYdv xLnae8Km/Af1XZU+g8/yP1g9W/4XI6X9UGWN1KlKP6NGpWb8zn7joPWUQ7+3 /H3kwS+Rz38yyMJnGkS/BB2kH1TmxP7OH+z9f62913dvJ/Hgf8iBt6H86LdB Sdt0LvkOiaHjbBs4T2zl/78eJetUalTeEPV3TT/6jW03ts++Ju7dx/qWerZL yXfIuLvy6zuP/M2qfEPUmthm7Zzz3zvfybap/Q/0A3yga8l3SF3I+21ufbiv c7W6kf+Sesnf3D7vrEWps3ELbU7b0j5vcEtrjP2sN8iNxCG+VfDnbvL8qMp2 K/vNxIZejbQ5/tPaPraibW1MXPs/Y8lvFP5LbKf9N9GG2L+tfezzkjjAwFxb 4x37+K7gXQwyZmLzV12r/XcJD/Vae3FiE9r2xrXG3hnnEL/4b4y6klhDPcHb GmbMxOadSsYvdG9lH9sST+EZXGU8Yy93x3on4x3rHeRZJd9Z2qeztuJ/jJ28 i8bON9IeXbTJtmKury910fe4866l7k66qi/31a3U4e0mft5OpQ8gh/eA/bAX 3018h/G9SYxoIv6e2qG5ffQeWZKviWfhT6t8++z9Vh7yVi/121kdiSPM8a05 umSO4VuLWECdPM03wjdYH2MK632dI6bs6N5d7P9grGHf2JJ5Yjd17afsbtqi lfjA31R+eIgntP3t47MD9VuIb/NG+tcQfWxvebgX2kH2mScGsWd8ydgxWJ+F Zxvnh/gW8N/d9e+JJd8k8X1CyTf//++xkt83RZzo1857RM4Q5dBn71DvroP9 cd7psFI3N0yeHsp61XdAPc1boN3Tu/si2kUl81szsbH382hvKuauaJeWjGV8 0ywumeuGqPNg7TFenH31AWoM2tHeaS/9h5qHdmSp+z9kpH71hnvgfz7aFSVz 2E5iRo81QfNL5uGh2hQ7voKuJfPHwUHHlnxrr0f7Wsm6Y/+go0vmxGfi5+KS eQzbETt4159G/9qStcAI72+4tpmgfT6L9vqS+b+V94s9h9s/xzg80fk93E+c X6n+TfR/7IPN1v4PX9JXz4/23JLx7fZo7yhZl7wX7WEla4QPoz2qWDNFe3nJ Nzsj2pNKxsPp0U4rGbffjPaAkjXI29EeVLLGmRntaSVj8lnRnqnP3BXt3SVr l3eiPaRkfTcp2mNKxroXo32yZO1wX9D9JeueZdEuL1kz8W54P/WrOl8h525i v5VvDR7eF+8cO1AT1nI/e/GFx/WHAc438I2Pdd/soAtKxrTV0R5RsoZaFe3k kvXIZdFeUjKecz8jvKMxysH+6HSqeh0YNLVk/fA0d1uylsG/ztDHsMeJ2uQ4 bF+yBmDfC+7F7x7T9zj/VjFcVBIf2C4tiRvM3OcS7/Tlkmdz7pFBJ5SM/4fT lswRK0v6dAPv/Dnv/XjuvGSOYN8c9+IjV+sns0r6Fn6F/W7WhvjFDfrGlJKy kMOZ53ku/nKjPoPPLtBvzy7pN/jMoSXtgk1uKxlTiCfzSr5n3vI1Jd/eR9Gf WzIGEX9OL+mv+OopJf0YH76u5DvkDV5V8j3wFhaWjGvEtP8B2J0fPw== "]], PolygonBox[CompressedData[" 1:eJwtlMdr1VEQhe8ksWEIiBAC4iILF+79A1y7dGOJNepKMGJBxYKKhSj23nvv XcEoIrYYTSyxxYIae++KiH7Hc+F9zLnvd9/v3pk588orq7oPK0gpdYMiOBEp HYef6F+wHz0PHqI/wkl0D+CTfsNAxBH4hr4DFeiD8BldD3PQc+E+egIcQC+A x+hPyXsXwZPk3/QK79GzOpiCfgqdoAvrWcRm6AxDWfclHoIv6OvQH30YvqIb 4Sx6cli3IO6GadCV9TvYiH4EHfIdq3Q36AiqSyOxN7RFlxCXwm1oBw18t5M4 MXz2WxirXKBce1hvJu6FD+gXcC1cU9WyDXFfuEaqjfasR++B9+jnMF7P8lll cCqck3L5y3otcVc4l2dwGn0OWqlHcAbGhHtRSBwBI6E293sD+gGUwT3W24ij wrV/DavRTVAKt1ifJ14I9/4SDEIfhe/opuS7zwh7QTksRG+BV8k935rvoLP/ f4ceHn6Xar44fAedLU+ot8vkgeQeD0Efgx/JnpwUrolqUZRzqYSK5Jxmhmui WrSEu9BP/uF5+9yrcXA1uWe1cDn8Lu0ZTayBP+gC7VOvw717mVybAdmbpdlL g7M35akd4R6qd29gOXp7WCuni8o9/G55TN6enXshj68Me0zeaoYb6J7Zm8XE JWGPluQcNLv10Do8w/JCdbg38sSqXAPlfjN5Fqbn3mom1Mt1Ye+pp5qlFeGz NVOq/aawl9UDzebU/C7NqP4L1oS9qP+EmuzBwlzDhlxD1U53nB/OqTh7so54 JfdKPdSs9QnPkmbuHxe4tQ4= "]]}]}, {}, {}, {}, {}}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwt0klXDQAYx+HrOMfCqp1lx87eB/AFrGwoUypDAyVEMhQyJcqUDCmkSIiG W917G28lU0jGSBoMn0Arzz3nLp73vIv/8rc0NWfVjgWBQKCbeWJ/p7OF1YTo YohBYuNcfpDDVtbwjnJ2sos87lLHeWaooJkkxthNPReZ5QJPWMs4e+klzB56 eMYw20jmPZfIp4Ap9pHBOj5wmf0coJB7NHCFOSp5yno+cpD7XOUXVbSwkc8U 0U+EQ/TxnBEy2cAnrnGYI/ykmCxS+MJ1jlLCMR7QSDW/uUErm/jKcZqo4Q83 aSONb5wiSjcnGOAlL8gmlQlqOUkp05xmO+l85xZnOEsZj3jIHf5ym3Y2M8k5 HvOGt7xilNcE6eCfriappZU22gnSEWuOLkKEicSb7KGXPvoZIMogQwzTQg1l FJJJMitZwXKWkcgSEljMIhbGu/8Pk2t4bQ== "]]}}], AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{Automatic, Automatic}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{ "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True, "AxesInFront" -> True}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.4275128808200893`*^9, 3.427533597575131*^9, 3.427533721641159*^9, 3.52237757196749*^9, 3.653108266209387*^9, 3.653108320642871*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[9]="] }, Open ]], Cell[TextData[{ "\:3053\:308c\:3089\:9752\:3044\:30a8\:30ea\:30a2\:306f\n", Cell[BoxData[ FormBox[ RowBox[{ FormBox[ RowBox[{"\:3000", " ", RowBox[{"80", "*", SubscriptBox["\:ff58", "1"]}]}], TraditionalForm], "\:ff0b100", "*", SubscriptBox["\:ff58", "2"]}], TraditionalForm]]], " \[GreaterFullEqual] 0,\:3000\:3059\:306a\:308f\:3061\:ff0c\n\:3000\:3000\ \:3000", Cell[BoxData[ FormBox[ SubscriptBox["\:ff58", "2"], TraditionalForm]]], " \[GreaterFullEqual] - 0.8 ", Cell[BoxData[ FormBox[ SubscriptBox["\:ff58", "1"], TraditionalForm]]], "\n\:3092\:6e80\:305f\:3059\:70b9\:306e\:96c6\:5408\:3067\:3042\:308b\:3002\n\ \n\:4e8c\:3064\:306e\:30b0\:30e9\:30d5\:3092\:91cd\:306d\:3066\:63cf\:3044\ \:3066\:307f\:308b\:3002" }], "Text", CellChangeTimes->{{3.653108279404674*^9, 3.653108285984785*^9}, { 3.653108337528771*^9, 3.6531083412367697`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"%7", ",", "%9"}], "]"}]], "Input", CellChangeTimes->{{3.396422639898984*^9, 3.3964226504741907`*^9}, { 3.427512889233471*^9, 3.427512893210299*^9}, {3.427533606743581*^9, 3.4275336162571363`*^9}, {3.427533731089604*^9, 3.4275337315107203`*^9}, { 3.4275337704085693`*^9, 3.42753377131719*^9}, {3.522377582658642*^9, 3.5223775873754673`*^9}, 3.653108295395403*^9, {3.653108326548623*^9, 3.653108331407961*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[10]:="], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJx1mH1wlNUVhxd1rOMQK0hBU6AoH11TCJFmkS+5dnZkWsZqoGDtFIPFYtW0 woSvJCCQiAuGMHylRlPGcdtiBQqRCjhAmEs6MZAQwhI2WRKTTSAbAgESJ0NA 2tpU7uU5zNxO+OfOs+x7z++e8zvnvptH5y2YOf8uj8dzrY/Hc2td9PKN1cWB 86rlyIpjPT2duurz92fGtbYKP/7dSSNS/ZeE17z6Zfee4BXh26twUv+/p0ZS omqd/Z5mf5j9YfaH2R9mf5j9x9jnZH+Y/WH2h9kfZn8465XXD/vyI6ra7iPx YOLBxIOJBxMPJh5MvGV2X4kHEw8mHkw8mHgw8eDSfaMezo+E1AQbR+LDxIeJ DxMfJj5MfJj4MPFzbFyJDxMfJj5MfJj4MPFh4sOD+x6/FPOVqkqrQ/TA6IHR A6MHRg+MHhg9MHpg9PzIrqIHRg+MHhg9MHpg9MDogdEDFx+6f0Oga6f62q6i D0YfjD4YfTD6YPTB6IPRB6MPRh8r+mD0weiD0QejD0YfjD4YfTD6esubq9Nd 0QujF0YvjF4YvTB6YfTC6O2trm4eXZ3uil4YvTB6YfTC6IXRC6O3t75wfejW 3c2rq9td0Q+jH0Y/jH4Y/TD6e+tjt29cn7o+cPPs6nZX9MPoh9EPox9Gf29z 0J1Dbt+7feb62PWJm3f3HO7KeWDOA3Me5z1H9TbH3Tnqzi13Trh96Prc9Y1b B/cc7sp5YM7jvKep3u5F915y7wV3Drtzz50rbt+6feD6yq2Ley535XzOe6fq 7Z5371n3nnPvFXeOu3PSnUNuX7t94vrMrZN7LnflfL29N7nvMe57hHuPu/em e0+594A7Z9255c4Bt49cH7p1c8/prmUmfrMab+J0aJjfEzVGf71abXS16R8Y /WFVYb+nq83/V6gf2s/1CcOH1CW7ao/5t6fY/Zx9ztvnJS77rLDxVKONr5Ot PoUefi+wD+/X6KFuxKVO6KEu6KEO6CHv6CHP6CGvUZOnJtX3tQFb07yd2mt0 1akXDp7uLE+7qNONrmr10f0bn/UWndPLjK5jKmz2q9EDzP77VMjEP6oHHr61 f+H/fc4+TxldVZq47LM9rs/aYPEFlWt0Neg5xf4Ef+ZVqW+90d0u54Jz7PfV PfP//GJXfLvUe4SJH5N7Ha608dRzB+buT0ltkfyTF/IIj7F6VZLNi9SHPNMP cIk9rwrYPEn93LrBHxouVKx8Thz6ER5n8yq6qD/nxicwOsgTOofZfMg8gLNs nfSN3yQNzYxrFf/U2nyLL2HysvvBRSXxFZcVcfZaFh38XsVfO2y9helP6vNv G1/qw1zDRxesf4TpZ/KCj8gb58S/nBPmnNQPn1I/6oCvqQNMHagjfUA98Qmf EwcmDvuii33xMf1EnmDyRL3JK/Vm7nKubbafhekz8jLd9ofkhblMv86080GY eYcfPLYfpY+Y19Tl9rwRZj6ig7/XMCfm2nkgzLyH8Rvnxj/4gzjklXNTP+rA yvfIL/vyHPnh/JwX/fiZeQXTH/if/sC/1BmmzvidOlMX5hWM/6kj/sdH+BDG h/gOH7Iyr2D8zXP4G130Ccy+nIO45Il5BeNf/Il/8Rd9DHNO/Ege8BPzCsaf +I+5h5/oExgd+I/6cT9yLu5H8o8vyBM+In/uHMGnnB9fcz7uR/RzP6KP+5s8 8n7BPujFb7xv4Gv0Uzfyhi7Og5+om9snrm84Jyt+wbf0G3HwB33DvpwDP/A+ Qz+SH+rP+w26yRf15v2QPiZ/T+xYWZD2SYPMn+X/mnyt/HKN3F+5BV3BlNQq uY+GTvrDr+Naj4ovc1un/i0l9U/SB8v6TH6lK36f9J03+lhGceCY9PmJIbOa elZVi++yK9/LCU6pk3n75PK6kf6bTTI/x67u925gXKPKLfrk5UjSVZ15uqo1 tqRWhT2vHvEtvqADzzz8TiD9lJr412nJ3gVNOv7ilqn+myXq5LSSq7Hu03pv wvjmnp6gyt7euS3QtVez8r3EpG/yA+llsi/PpQ9KGJh/45x6u/vuzYF/nNXe st8f9O27KHHOLy6aE1nYqUbPaWiMdX/73rF+0X7ftXY5p/efBW9ENrXpxz/u +1JXYUTm4dLdH0zyTwyrUENS//wnYzLP0h+afcwXbtaLbpQfTImGZB5mf7M7 0X+zQiXbOJLXjPIRP/WODeuszQ+MSfWXig+8T88I9fQcUpvtc/L3v8RP37o3 P3JIjwuNKEzz7hLf1W+7tSao+rNm1dQx8EXBQ5lxh1XO9q9WBYt3is/zfKU/ i2s9pIdn/O5y+eU7fVH1XNr64JSwqgpkf5zmLZW++rH9nl75yMQp3s568c3Q F75+rau+WQ1Jf3tpJBSSPg69cf39wLiwXjx5bokvOSZ9Gb5nct/8gjZ1ZljZ I5kbIjIPA3ZfndAe/G3kq3bxad5nbxX5ZnWod0/ddyR+evTOPLzdZ9GF9XGZ P+/QTbOe9+T/MirzLzKj8Yv46XUyT5gfOSZOu370L4WPZW6olnnCOSuN7pgO Xyz6757gMdHN/Eg0eajXpwbOXhhJ2Sd5I69rTF4rdMKm2vTiQKF235vrd93i SSp9bHM4vuKo+Ebmh6l7hWrOm//9VH+VzBPmxxrjh3o1ckn3pynRGpkn+CbD +DKmvhw+YVZXYYPME95nEo3/2lWD8X2Tyuu7/HjPgk69zuT52zjnB6wNzOzQ o0yfnFW1L00YmfrZRV1t6hZRo5OrW2J/bNMLTV+dVsOKurOLr5/Tg40PQmrp Oxuf9tc166WmD8tUrenvWn3C+KpUrbR9o/ubvt2rTps+LdHLjE93qWnW93qT 6e+gfO8p4/ud+k3rW3kOHStMH5Xq49Z3aqrp71Oacy42fRnS8bEjnbGaZtE1 6vXCGXFLLqgE0+cRHdri2RrY0qbyzJxq1A2DGq/teeKqajY+i+p1P/GP9z7f oaZ5NiWn3n3n9zpzPm/wrqXB/3RKnfi9x3xJtP6WPuP3HfMkw/aL+IC6MT/o E/oaXzAv6FN8Jr5jPtxemSP4mnlAHHxM37Av52BucS/R75V2Hkqf8HsL3Tl2 vqqcIQ+sD/RvUEn7667v6XdF/BW2+deVb55oi82uUVn3Fvwibnar+GuorZ8e be6Tk1In/IWOleY+0eID/MU5t5r7ZLPCZ/iLPI4398kB8TH+ok5rzX1yXPoE f6Vb/6usHaWXY987oyv63VxVPLBF/OW1/aOSXvzOxkB1nV59dPLw1DOXxF/N tv8U/Zhr/abD3oWf+8J1KtE8d0kPzRozIH/QGZVh4rTo0Hs152L7j8s9V5b+ 0Xh/5gG5F1OG7fhVXOtmuUc77lrSUp6m5d6NRdUE79iTmnva++E87ZtVc7sO rSr67PZ5kQcbtK3bFfU/LKgnhg== "], {{ {RGBColor[1, 0.5, 0.5], AbsoluteThickness[1.6], Opacity[1], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNmAnY11MWx3/XVohEKCIltKdFaY82RbTRikq7KfsSyTY1KOswkUGi7Euy 79sYYzaDWQzGGGNm7EuGwRhzPs7n/7w9z3ve87v3nnvOueeee7/n/ltMO2b0 /I2qqro2/m0cfEKpqoODfhHfI4IzVj9oy6BNgjYN2qJKWdr/DKoXtFVQI8eQ 3bzKucg1VAd928iR+ySoc1CvoJFhq2vQL+N7e/VtHdTEOeh+L2i7oJ2CdnC8 obyeNnZWpnHQrsrtGNSlpE76m8mxs4u8JtdQe81tY3+fkjZbBu3hfOa10h7t 9kG727en49jfS46+Do6jo21QC3V+6HeboI6Oo6OTHB3dtYGObs5vFzQ6fOsZ 9Ov43rekji5Bo+K7e9Cv4rurutvq4076vY860NtD3djfV97JfWpkTHq7X+jv q1586SdH337qQscA/aY9JnzpE/Sb+B4a1Ecd/Z2H3GBzATtD5H2kLto7wHnY HO587BwcNDBoUNAhcvQd6Dh+9S6pn7GRjmNnjHqHSf3UO8px/B0tR26sctg/ VI6dsaG/f9Bv43uKcoxPCBqhjxPl+PhF0LigaUGT7MOvw7WNzcn20T5SX9F7 hONj3MOW7u1R6hwfNFc55s1WF7pn6BO+zJRjf7rzGJtlH3P6lfSfsTnqQO/R 6math4bM/kEvxvd694I5+5Vc3/ygY/UPOydoGzvH6xPt04LmKX+i4/h+khz7 pzt+TNAprhNfTnac9kLHsXmG/Ligc5Vj3tnaQPcix/HlTDk+fqU/C4LOso85 5+krvpyjDvQeFusdHPS7+B5Uct6SoOuDLgv6cdCP1Mf8oSX7VwYt0w/sL9Xv Rc5ZrJ4LHceXi+Ss43LH0X2JPrHWix2nfYXj+P4T+flBP1UXsiv0AzvLHb8g 6Er5UvtON8ZX2bfM8YX6fbU60HuNuvFrXKz3gKCX4nuVa8P3G+T4+GzQvUH3 Ba3WV3y50XHaN+kT9tc4Tvtm+1a4n+QauXWb68SX74KuC7oj6E6/if/d7hN+ 3a+Nm/VltXbWOo6/98jx61bXjI119jHnLnVf73rWqPcBdd8S9KD8VvkKdT1k H76Pj5gdGPRyfD+u3+h+Qo7vz+k3un8uR/fPtM3YU64B3590Hu1n9Ju1Pu04 bc4Q55dz+7z68AusrWEv9QK1AhgM5m/u+PCSMX60yjFkwWDqBmoEsOVfVdYQ DaqsFbZwfq1WwMZjG+zVHaFzfdBrVdYL4Pp26gbDt3fOjrYZA+vAvPerrCGa VnV1AGPgJBjfQptNNpgPdu9iu7ntAVXe98PVy73bUn1gNxj/UZW43rpKvWBv G3XtqVyt/mjm/HbKMQb+dtC/VtqA2ivXyvH2VV2dsWdVVzd01B6Y2UU5MLaG +fBujoOnfdTXQ7laHdCjqsN45MB/cBkc/bTKGq6n+vor190Y9XcOmDm0qsP1 werdTznqArAZzKCWoY6p1YXIDjIuNX/7qG+I9oZpo797Qnsr48s+f14lJh1U 1dUHB6t7pG3mg6U1nIePUtdYx2r4PUHbo5wP5oOR4O4Ix8HKgc4ZoY1Jzmce GDpZ3VOqxNEvq6wJpmr/COVqdQay2OAsTqvq8HuGfkzWBranKzfB8emOzXIO srNtY2POBm3w7QR9AlfBU7AdLJ9X1eHxifrBHTFfG9y5NZw/1rGZ6qvh/PHK dXEve2v/ZPUyBu6d4XwwBbz5uko8PrVKP8DPBfp3ivPnK3ua8Zur7lodsLCq w/hF+nWWbdZztm38OMc2es+1jV5ws4bh8CVVHR5fqP3zlcPeBbbRdbFy2AYz azi/VDlsXKLct0H/Dbq0qsPg5VUdfoOF1AVg6GX6cbntM/VlmT5e4Ri2wair 9Wm5urB/lTaYs8L2hcqu0KdrnA+OgSn3KgeW3aQfYN1K/Vhlm/m3KFfD+1Xa Bidr2H6jY1eqr4bta5Sj735t41cNM2t4vFZ74Bq4WJXE+9urxPnvMcQ13Ob8 lcoyRm1CTXad/q1VF36t08Zq173O/VnsulnbA/o3JHTsbB0IboOFj2gP/HxQ e2B5Dd/gj1Z1uM4YtSR15GJtg81PafsZ2/jyrG1sUweA+X8JeqXKN/UhoWNP 3/W1+uA5/Xje9lp1Pxn0RtALVcrfpz5s8PvACxnWqlv829g3+5tBv6/yvXm3 OlhDD+oC36F/DfpDlW/VvtHX0Pfg34L+VOW7aVj0Nbc+/EfQ61XWPO9Uifn0 vx30apVvjQHgv2+uvwf9ucqYD4y+HX2P1Gos1n1Q9O1uHUWtjjz3Cb8/ECvq EN7OrIU6oVd8b+n7mjcOdrmfec/+sUrs492H/+AL73HWCO6Ps07h/L5VpTzr pZZjXeRk65KxJs6bltwz4tmo5BzktyoZO3xo4z5SM21fMnasvWnJuLDeiY6D gS1Kxo647VIyRsTn3Sprrwbq5Hsz9/AD1w5/3+9XnIN8W/edWmqPkvtEPCfb R03UrmQNtJvy6NnWfvKB2ugIOXXK7JJniXP0cZVzieHeniPGPquy5iDmU0rW HtQIHUpi/P5B7UvK7G28P1Oe/fm3ezStZD0wwrkNbXc0l8Dg6XLw7ZsqsYc8 6WRegUP/qRKzpzqX78Oq3P+P9f9V5abq25b6PVMdC9SJ/h+Yv99o639VYsCl xoHvHwY1Lrn37Htnzwt33GvOQb5wQEvm2FzH71Ce/murnLebZ20T95Q9Yg83 tq6Gb+IZZw83U6aBayHO9YNv7hmv7/6y7+wt3y3MtY1K5hh99ZVH96bqZ8+3 cC4xQn9neQPP4Ouu7XZ92Mp+9nxr/WE/t/FugTfyu4l7R5yJPd/z3MMdSu5d Y3OAb3Jq25J5RV9jY/6F7XHm1OfmFfqaeOewV7uW3C/6mtrPPu+kD9uYe+hv VvJ8cjbJdXJ+sbyZ/c08C+jczX1nH9e7ZurN79zX65Rp4f5SV3M3kZPcf61K nlk47YervFfauEf076HMXt45m7mPbbxf6GOMu6vWrmfOtDVPyJm23gufe97W u1/tPQvkQzv3nRxo572A7tbqJwfau79fe2a+ct0dNtijju7dl57JL9yXTsac +O1tDNHZyxzD527mPPHrbGwrv4nr4SXvON6Kk0res12c19W5EH28O7o6Rm5P Uob7c2rJ+6u3ZwN9vP/wpaf+HFnyfuQthF3eqNzD8B6enR72tzCGPfz+1vuC PEIXOrqos6c50NO1c3a4r0b7TQ7hF++ko0vWLpw13mh9PUf4T5t79aiS92k/ c7mvecjZoG+8MWxpPHkrDfAcbec3sjNK3rm8McBu3hucTeqowZ6FWSXvTeqh GcpMrZIz50X9wUbtPA5UD4Ru3gfoQscSdaKf+xaOPc7aAPWMM2eG6MOcklhF jcg39SL3LZza5SXPF3UG9d488q7k7yMH2v+yseVepi5s7lzO7EHKMRdinJqw rzEntpwx9NU3H0aZG9R4/BZTT7t8x9/3evF3ZZU4PtKc5Lweojy5OdL8PNh+ zh31wCjzbZjrRR/vYd6HR5gbY8yHRcEvK3VYdpjxrOF9a/OR7zb2HWk/53mm e4GdccZ2f/eb/QPjxhln9uuwDeTnuC9g/VhzjD0caz6AxYeaJ+g81Pwh3uPN c/BlvHuEL7M2yI1Z5h46jzLnOcdTXXsfvzk/3HHTtIsc39Qb3HdTlB9kPi/w zNHfyzzlLEzznBKffc27OcZkqG3qJc75bPunGyvWVatj+KZmn+Cect9wj1Gn wQ83f/hd7U5j/GnwW0vGbLi5eod5Rz5vZNyONocvCnqrJF6SP/PM+UuD3i6J r58R45J5cQ66S9YEnwfdXTL25wV/o2QdsBhfStYcS4PeLInxlwe9U8RRbZHn H5DjJXP8k+A3mwvkNvcv9/JEv8nz91x/U3N+gnq6GxPiBK5NVL42n7qaeoc3 D+cCbJhr/nwcfE3J2vOj4DeWvF+nmTPkw4fBV5U8WyuCv1vyfpxrPNGzHNsl awh0cb64e+8yXsTqNmNKPFeXtI3s9SVtoP+WknvJPt5Q0if8OSn4mSVx8OTg Z5W8n68rGUdi+GzwZ0rW9zeVjCnxXBv8uZLvlvnBTy1ZGxwb/LSSOH5K8LNL 1hUnlrwXuBOOD76wJF4fF/z0kph+QvAzSmL3/cHvM77HBF9QspZ4OPhDJd9F 6L5a/dhcol3WcaVrYX1XuMZ7g68r+b5C37nqxPdr9B9fztefe0qukzXi18X6 hu/L9P/x4I+VfHc9GvyRku+xp4M/VfLd9WDwB0q+354M/kTJN9j/AVvHass= "]], PolygonBox[CompressedData[" 1:eJwtk9dOVlEQhc8QIEDAAEGjRI0YjVz6DFx75YUP4LUB+wMoNmxgwY6KHRSM vStgxYZKExRFiiJGo4FoNBq/lZmLL7P2+c/5996z1hQtLJtfmpIkyTxIhQpL kivwHp1DPQCjMAfSebaW+gYyYAbrVuojvYP+AqvRPZAK+ayfUB/DV/Q3WIe+ BO/QmdT7cA9aWb+Fzehr0I/Oo26APsiGuTzbpLNBLpSwbqM+hzH0OLSgG3VG 9DDUoM+Z/3cx9TwchHbWfbAP/RlmaV/W5dQL5r+lUbfCByiABTx7SX0BP9G/ 4Bn6KXxH/4Dt6FswgJ5C3QaDMBkW8ayd+gp+o//AQ/QD+IQegUr0De2Jnkit M99Te72Gm+hT5lp77Na38gJqEvdGPc4Mj3qhLLxIVx9gcXiXFd6sN9fyqJPa AX/R/+AsuhsserqTOgxToZz1afM76S490GD+H/q2N3HvlKmc8FDZUI/TIiPy Up7nhae15plSljrgpLnH8rYbjpv3XL3ugqPmGVO2OmEPuhmG0EXqE5RGdlOU O1gSWZoQ3m001/JQWV5j3itlWtnaov5FxvZT75pna7ZyCksji3pHs6LMKWua mSY4Y94Lnek6+oT5XeTxVfQx87v0wyHzTCgLyuhtdL15bwfhMvqI+V01o8rO KvO7KUPyqguS8OwiHDbvpWbuI3pFeDc9vN5lruW5vK2GaeHxCKyMbM00nxX1 QHfXzGgWqmCS+Uxo773m7+oMyr5mQrOgGRiAZeazpG+GYLn5bBSaz8YOc60Z UbblqbxUxjWLmhHNRkGc9Y55b3Tm/5t4uXM= "]]}]}, {}, {}, {}, {}}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwt0skz1wEYBvAf6dTJza1pOji6du3sZsbduNakSLKUpLQgSiplaVERKrRQ 9j1kaxepUJaQ6g/o851x+Mz7XN7LM8+uxKS4A2GhUKiR/UKQh+kXBmikiUpW qeAowdMnTjLIEDf5RRXNPOEU0+SSThKfOc0rhrnNGrd4yjPOMEMeGRxklrOM MEo169zhOS2c5wvnyOQQc+TzmjHuscFdWnlBIV8pIItkvnGBcSao4Tf3eUkb xXyniGOkMM9FJpniAZvU0k4HJSxwieMcZpHLvOEt9fyhjk66uMIPSskmlZ9c 5R3vechfGuimhzKWuMYJjrDMdT7wkcf84xG99FHOCjfIIS3oyz52Bx24bbTT QSdddNNDL33BlhhgkCFaqaOCYnJJYx8JxBPLXvYQQzQ7iSKSHWwngm2Eb+33 Pz+Kc4E= "]]}}], GraphicsComplexBox[CompressedData[" 1:eJx1WHtclFUaxsuWqdOasVqTl3JNZ70UXsbSVd+MYot1FcnMSEfLyhK8LIpK uV5AxzI1dcfFTE1csc0CvCCmjR4wRcHLjggMzIIM8A0MDEhO4aUyWs/Xc+b3 e/nBP+f3fPN9533f5zzv5fDYG/Mj32obFBTkaxMUdHetOrHsbHNzIw3+/ai+ ltBasfrt/zWlJddT/tFtkQaPR+B34D/p79GSmTdX2q2V6n1gvA98Sf+Onu76 lcUZcVV9D4zvgfE9cIi+UsKsd78x25xiob6vwtgfGPsDY39g7A/8nr7ShYx+ D9mcDmUPGPaAYQ8Y9oBhDxj2gE/rKw3sfK5WM59W9oFhHxj2gWEfGPaBYR8Y 9oF76CvdOt5xg9W/X/kDDH+A4Q8w/AGGP8DwBxj+AMMfYKx2fSW+wl9g+AsM f4HhLzD8BYa/wPAXGP4Cw1/g1njkfgLzFf4Dw39g+A8M/4HhPzD8B4b/wPAf uDUdch1wnrnfwHxFPMCIBxjxACMeYMQDjHiAEQ9wa3nM84rrmuuGnwOPA5iv iA8Y8QEjPmDEB4z4gBEfMOoo7LRWF3nd4nWE5zHPE647fm48TmC+In5gxA+M +IERPzDiB0bfwb7gAxh88L7A6zavo7yO8TrB847rlp8zjxuYr+ADGHwAgw9g 8AGMPo19wA9wa32X90nex3hf4XWd101eh3gec91zHXAegPkKfoDBDzD4Af5A /131IfAF3Nocw+cSPkfwPs/7Lu97vK/wOs3rHK8LPE+4TjgvwHwFX8Dgi2HV p8EfcGtzIZ/7+BzH5y4+F/E5hc8JvA/zvsb7Aq+jvK7wvOI64jwB8xX8Mazm GvDH52o+R/M5mc+9fE7lcySf6/hcxecWPgfwPsr7Dq/DvA7xvGtFVy144+tw uf81Wint1ogi6W8d9ZV+amKZ/pzypJ9uVYeAH9XfozL5nUsU6iv1l88LVF3H 773151QpcZ7I11eqletxNccBn9dXCpJ/aXb+HPzid74v/IBdnCcw9xtx5+jx KT3gd/CEuF06X4on6A94hM6v4hV6BcZ70CH2hV3EAZ0hbugM8UFHiAc6gn84 N/gDnUQeu9yYG+2lCZkzjkRYqsTN10N6xRs8VC39LBeD5fuXyCr3OyuypZ0s GirtZoj3pN/56r0QuW+JuCDtFVL7t/ZM9Rvr1L4z7KEDQuMbBOymGNqsTbZX 0+6OH483pVeIcN0PWid5LBVLdLvk0O2KYN0udfvmblzbRYFuR8TqfqjvTLof dLDLwmxjnk/ATud3gv8ZbWoUQbpf6jwYVuf82/s0RfdX6QK8A0NX0CHXLXSK vMF3wMjzqzrviscdOi8KI+5dcr/txFfwmKDzoM4RGPHj/KEHnAfqAfIA9QM4 VeeTftLPU/kNPmAH54K8QV5Cl8DQyRhdP+o+Cv6gM5w78p/nBTB0Ct0gr8A3 dA6eERfyDv0B+AtdN0qX4AfvTdP1rN5DXuNcgeEH+EAfgU6RR6hLiBMYcfI6 ibxAXoJXXmdRHxAv6jLOETqD7lGXgFE/EC++g/84P/gD/vEe+IN+cA44f5wb VtQT8Ir6gXPh/QUYcUB/0BHvF8DIG+gL9ZPXf2DkE/QDPeC8kS/AiBd5ifPH OSIfgMEHeGxNB8DgC/WP923oFBh8oh6CT9QvnBPnD7yBJ84X6gDqL+cH+od+ OB+IC3ri8UO/eM7jhT6hN8TX8LtTx422wBxoXNvlVtrrvhb3tpCS2iGWxArR obn6fPOKshb32L49V/aw/LtMpOy9IszBhSp/kYcPNG5OjTZliR77P9mcbD/Q 4v9pb3T98n27NUUUffi9WzPnqu9gZ9K34zIjruZTx7pXw02NLf/fsHHq1jtp 44ppdNKsCMPjNcovzBvBtC852ltN1zN9m6MdjdS72/lX/bG1IqHn/R9Zu9ZT QdDbJ8yLqsX49uu+T7teRm///aN+lu+dIv7yJY8WV0QXw7IbtKbLovuAR6pz fali519/HBZ6+3N6IuSOzRqbI4zeLWNDb2fTu7M/yIzIrFT7YN/Y7gO62W5W UIR83kBvyv1rVD7EzBsTb6+uFhnT//B+8rIGVVe6fJaTaR5eR/X9O2eZf9AC 97w5N7ZZh2pi5YFOcfawWnXOE9q1ne/sEpg/jdqJRq3QTdaHR442NbrE/XI/ F12T+xWIXlNuveN3uVvMRW37LHjL78oXzkllZ4zhJap+bCqgMaHH8qmN5OGi 0t1q8+kXDZ48sfBm7rGIqw5VV3uNmvuawZOl8tdVfHcdIFw75Er3yn1OiFTJ 51FyfXn3+Sg1F0D3B4eYJ5qezKLYJ90FxrwslXfw47D8/mzg/0vPTHI0N+dR z9jExU6HQ/W/VRf+lZA8ukTVh8VrPn4mtMQtBk0rLdOaXNTBWDfZsFUTlfva p0YvdVPsgy+fNRe4VR4iL4q/iIwyrKmgvVmWi8aOHlX/wlakbrZGekXUd4kP 2pZUqbxamvrJqNCRGhXNfedKM9Wq/tnhkdgSLa5B1R/0wxdOJByM2OgR3pJ7 /LkDA/Mv3vvlsbvnUykyB93xaU2B/zNh30zxY6FxQMDvpskTesZvKFRxfy1/ d4gE28rZzojcFnNCuMzHM2KROLzL6j9AfO6IlL8fUfVnc9L1k2bbEXXuz97o Pc+56QxN7L1hmf2eQqUT6ChDnqeDDsXv/sAaW6Z0Bx0+J78vVLq2bJr1S+5A t8qLn6MMfeLLKmnec3On+KN8qk5hng+T33uo2HxfYfNLXjo30uQwLq4Sy8de /iltXC0t/fOMbPNwTUQl9KrVtmq0aazjIdsStwiX+XmR5sj8PCti5Pk7aNjS 2b5cX57YFnNyrdV/gnrc98oWq/+oiJH5nq++6yvzySFW3Ul9IvR2Hs25NH2j dahLbLm1yKs1FdBy75yF9qF1YvnV2e3SmzQqLt8z3vB8rbhQGtLV9pRGP3/6 8gzndw0is0QcN/9QQ/3e3T7JEPf/PpTetMp+o0JUt3MG245WUuT5+hGmxjKx WNanHLos61O2qLne/nxzcypdTOwy0eD5XBTJ+lMkFsj6c1l9N3O/qUprclLI kZIbaQ/UC9hZYNw5zPTfRrHj0MNfmxcF/v9y6L6IM8btgXtzhuNQB1tSrVj/ bep0p/saFU1/+nHLYa+6D+wN7puYXB+4Dzwh+XOp+R95ruYCyZeL6mV9Lqc+ sj6XiFg9P1X9Mst83ylWyHxPItQRrMaNr8z251SITTPCs4yxpdRLr38qv9Fv q9cOKmwmr2ibm2Q3rrum7i/oK1uqo1Ynjy4WyYW+Cf7tgfsG8mDsnuXPm9JT aMFnnTulJ+9W9w11T/34+Nbo/5TRyeXODukVgfvGiNfic5vLrwlTTswxc4aX dl9fPM25KXDfwP1jz9+yydToVfcPvb95abL1B6MlMXAfecFS96jljz6aGXzs pDnDI+q+WFyjrfFQ2qkXEu0jKn7rb6UEHXz13OH90ecqKMa/ZaRpfqlo/9La B2xJBVQ9d/Z3WpxDrJf1/ZSqyyNkf8sUXWV/O0irf948yW/cRSHxieeMeUmi ++D1Y0xP5omaT8JGht4+TeGy/hWLqbL+XaFLUTl1WkqVKF2UPs25oJzOvTi8 U/zFchGWmODW4kro/qwP+1tm1Shdxyy6M9MZ1CC2vfyXCIO5hk6WDmlKa9NA YQ1d7ebhNeLaxG7HzZOLKaP3Iz4t7op4fti8eu3IKZWX28Y9+5JhjUcEDfxH d9tTFbRuWvGa5DdrVF9+9Nsfl9v3VdHIvWHDTfPLRUfZD/PIL/vhaZETu3tE aHwmrUpp3GH1HxQdZT8oEG7ZDxx0dXzKG84upWouuJD96SljH58oPXBvz/gj HvoVrZbrWA== "], {{ {RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[0.5], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNmHfgldUNhr8jAgo4AQEVBREEZctQ2cpQpiIibsGFVhHFhXXgwIF7IiCI iBMctdaq2DrqttRtHUjVOtBO29ra1tE85Ln98UfuWTk5b3Jykny37ZQTx09b r6qq8+OnXrT/DfpP0ItBmwZtGNQIKrneIKhJ9BsHvRT9TYI2kO/loPUdbxzr GwX9JvoDSu5DzqDoDwzaJmhljBsGbRTUJ8a9g76N/lZBmwc1DWru+sZBvUr2 mwW18GwwbuE6482CZ9OgVxmXlLNl0NbKY2/fmN+JNui5oJ8EPaiMhuLfxrOR /VpQy6C2QYNLymsXtHv0hwRtF/RGjNtUKXd7z0SPzs6zt4M4Wge1d702buZ5 XYO2U35T8Ae9Gf1txYLe3T0DGd3kZdzFc9jfw3XO3DVk7BL0ffR3DtohqGNQ T9cZ7yJ28O6mLLAcGDQqaHTQUO5Ju/X3bLD0k5fxHkG95RvgOliGuY9zBnk2 WAa6zniLwNg86O3oD5d316DfYvegsUF7io8zR7jOeKSYOHMv1/uLfYDnjLbl /GFxztCgDiVldFbnZiXx744uJdu9g/apzQXtJz7On6BujN8NGhN0SNBE18G7 vy249tWO7DlA3GCc5DrjQ5WDvocHjRPDMcpF3uR1cE2xHS/t4RncK76FLx+m PGQdKQ6wH+EexkerG2cc5TrjjsrAB6d6PniPtUWP84KmBZ3IfZS0AeP+0e8X VAWdItYj5DtEXU91DlwniRW9p7vO+GTn0Pt08YG3Vcg9Ptpzgm4KujBodtBM 7QXeM+RlfJrnsP9M19Hj3CrlnBC0FW88aFX0f+z6cUEzPB8dZsmLjuerz3TP PlneC9WH8WXiANdFrmOPi22xwQXKYM+lYkXXS1xnfLkywP5B0FlBVwXdKA5k 7BnYRwTtGDS8pG2uCZrrOrjmiRUsVygPXa/TFuh3rXZlfIN3zBnXu874+Spj 50+D5isPnR4NWhp0u3S1GJaKl/HN6oauC9zH+LagK+W7w31gWRQ0R1sudB/j W5zDNsvVE1+4Tz3ne3/4KfHsLvVEjzuVzfge9cSWd7vO+F7lIatl2LNF0HvR XyYv5y32fGz5O/EvCbrf8xdop4Xq8ZC4F2u7RY5XqDO4Hg66VTmPOwf2R7QR tvy564x/KW70eDbogSpz2zPiYPykuJe7drOYHhAj48e8M3A8oTz2POU+7PEL sXDer7Q1Zzzt+n3eDf6L37+gnug9S9tic+oA8i11w6+rrCHW1gTWAuRv6gVq CGqMV6qsG5pUWS9QE5DXkUH+r+VwWmoF9mzqGmNybC3XEtNau0ZeJb8ii5xc q0Fot3RPa9fIc+SWfp6zRVVXK2yr3NerrBvaVFmPUIu0qrJWIEe3VC55u52y ide1GoG2vWuc11W5HeV7q8qaY0cxtlcWssljtbqDlrxOnULtsp183deRix7k 0M2tEXp7Bvm5p7J7uIc6gvqpj3LJ0X3F21O+Lsqr5dVd5SOOE9umK2uAdmQf OXmgZ5O/yLXUAuTjIWIkP5JHOXuofJw9zDGyRsrHmeTfWh0xXL7dlDHC80e5 h/3kQHLhO1XWHGPEQW4l11IvUBOM8+zxrvUQ+7p1xijPm6Bczt/PMWdPdFyr DyaKe5Jj9hOrDvAc8uMUMZETyZ1jtSljMB3u+P0qa5GDq7r6oFYvTJZvpLIn ie9IzwATubKW/49yDXzHuAa+qY7xp67eea0mYK2FOf94zznONXCTK8mb1AXU Cieow3TXwEfOxFduifUvgz6rMieT788WKzmxVlPQzvAM8tiZ4j5NPnCQx85R B2JSrY44XT70mekamGa5p5anLxIfObBW75wnH1jJq7UcfoF86DHbtRnKmC2m S5RL3lhcZfyfKvaZYrpUPjDOcby6ytx/pbxXKAMs5CtiK7mf/El9MMI64Grl wnuZuhGDa3me9hpx36gscJP75roHjIvUYZ5r6DTf8RnygXWyOp+sPeYqF33I M7Wcv8D9c5Rdy+0L5eNbk+/P+tH/sMr8Sl4kx5B7nhYHeWe5OpC7anUH7VLP Z32Zut4p3zxl3avtyGm1GuEu+bDFPa6B9X73kHvJwQ+LlZxay6UPyIdO5L5a /n9QPmz5kGu3KuNnVebyR5R7peMl2m6ZONDnUfnQ7zHH4KMOqOVn2sfF8Yz2 Yv8T8iHvScd3yrtCW2DXWs5/Sj50elZZ6EH9xzf034I+rjI3o88Lrm1d8r+E etp6hVivUofbtMVzyv0q6KMq64DusXdb/2f4ssr6oKHEOjl/L/9HILe38f8G 8na9krUCdUKbKnMxufHvQb933DN4dvB7849V5mx4/xH0SZX59eugT6vMB9v7 LU6OGuU3Pzmwfsl8TC4eIy+x+V9Bn1f5Vv9ZZQwjLjcsGaOJzx2tJYlPO/O/ hN8dr4sVnH+uMieN0R8+0H4bBu9fo13DWknZxFfmVsuLX/Felng3H69jP+y8 vutr5H9N+7RU/0+0yb+Dvqny/b2rLjVdsc9g19coD9lfKP8V/WOlvH+S/xPt 3kZcX4rtM3Ueo/3+UmUcA9cfxIYvfKUea9QZ/Lx3Yh0x4C3vEj3e9w7eVYdv xLnae8Km/Af1XZU+g8/yP1g9W/4XI6X9UGWN1KlKP6NGpWb8zn7joPWUQ7+3 /H3kwS+Rz38yyMJnGkS/BB2kH1TmxP7OH+z9f62913dvJ/Hgf8iBt6H86LdB Sdt0LvkOiaHjbBs4T2zl/78eJetUalTeEPV3TT/6jW03ts++Ju7dx/qWerZL yXfIuLvy6zuP/M2qfEPUmthm7Zzz3zvfybap/Q/0A3yga8l3SF3I+21ufbiv c7W6kf+Sesnf3D7vrEWps3ELbU7b0j5vcEtrjP2sN8iNxCG+VfDnbvL8qMp2 K/vNxIZejbQ5/tPaPraibW1MXPs/Y8lvFP5LbKf9N9GG2L+tfezzkjjAwFxb 4x37+K7gXQwyZmLzV12r/XcJD/Vae3FiE9r2xrXG3hnnEL/4b4y6klhDPcHb GmbMxOadSsYvdG9lH9sST+EZXGU8Yy93x3on4x3rHeRZJd9Z2qeztuJ/jJ28 i8bON9IeXbTJtmKury910fe4866l7k66qi/31a3U4e0mft5OpQ8gh/eA/bAX 3018h/G9SYxoIv6e2qG5ffQeWZKviWfhT6t8++z9Vh7yVi/121kdiSPM8a05 umSO4VuLWECdPM03wjdYH2MK632dI6bs6N5d7P9grGHf2JJ5Yjd17afsbtqi lfjA31R+eIgntP3t47MD9VuIb/NG+tcQfWxvebgX2kH2mScGsWd8ydgxWJ+F Zxvnh/gW8N/d9e+JJd8k8X1CyTf//++xkt83RZzo1857RM4Q5dBn71DvroP9 cd7psFI3N0yeHsp61XdAPc1boN3Tu/si2kUl81szsbH382hvKuauaJeWjGV8 0ywumeuGqPNg7TFenH31AWoM2tHeaS/9h5qHdmSp+z9kpH71hnvgfz7aFSVz 2E5iRo81QfNL5uGh2hQ7voKuJfPHwUHHlnxrr0f7Wsm6Y/+go0vmxGfi5+KS eQzbETt4159G/9qStcAI72+4tpmgfT6L9vqS+b+V94s9h9s/xzg80fk93E+c X6n+TfR/7IPN1v4PX9JXz4/23JLx7fZo7yhZl7wX7WEla4QPoz2qWDNFe3nJ Nzsj2pNKxsPp0U4rGbffjPaAkjXI29EeVLLGmRntaSVj8lnRnqnP3BXt3SVr l3eiPaRkfTcp2mNKxroXo32yZO1wX9D9JeueZdEuL1kz8W54P/WrOl8h525i v5VvDR7eF+8cO1AT1nI/e/GFx/WHAc438I2Pdd/soAtKxrTV0R5RsoZaFe3k kvXIZdFeUjKecz8jvKMxysH+6HSqeh0YNLVk/fA0d1uylsG/ztDHsMeJ2uQ4 bF+yBmDfC+7F7x7T9zj/VjFcVBIf2C4tiRvM3OcS7/Tlkmdz7pFBJ5SM/4fT lswRK0v6dAPv/Dnv/XjuvGSOYN8c9+IjV+sns0r6Fn6F/W7WhvjFDfrGlJKy kMOZ53ku/nKjPoPPLtBvzy7pN/jMoSXtgk1uKxlTiCfzSr5n3vI1Jd/eR9Gf WzIGEX9OL+mv+OopJf0YH76u5DvkDV5V8j3wFhaWjGvEtP8B2J0fPw== "]], PolygonBox[CompressedData[" 1:eJwtlMdr1VEQhe8ksWEIiBAC4iILF+79A1y7dGOJNepKMGJBxYKKhSj23nvv XcEoIrYYTSyxxYIae++KiH7Hc+F9zLnvd9/v3pk588orq7oPK0gpdYMiOBEp HYef6F+wHz0PHqI/wkl0D+CTfsNAxBH4hr4DFeiD8BldD3PQc+E+egIcQC+A x+hPyXsXwZPk3/QK79GzOpiCfgqdoAvrWcRm6AxDWfclHoIv6OvQH30YvqIb 4Sx6cli3IO6GadCV9TvYiH4EHfIdq3Q36AiqSyOxN7RFlxCXwm1oBw18t5M4 MXz2WxirXKBce1hvJu6FD+gXcC1cU9WyDXFfuEaqjfasR++B9+jnMF7P8lll cCqck3L5y3otcVc4l2dwGn0OWqlHcAbGhHtRSBwBI6E293sD+gGUwT3W24ij wrV/DavRTVAKt1ifJ14I9/4SDEIfhe/opuS7zwh7QTksRG+BV8k935rvoLP/ f4ceHn6Xar44fAedLU+ot8vkgeQeD0Efgx/JnpwUrolqUZRzqYSK5Jxmhmui WrSEu9BP/uF5+9yrcXA1uWe1cDn8Lu0ZTayBP+gC7VOvw717mVybAdmbpdlL g7M35akd4R6qd29gOXp7WCuni8o9/G55TN6enXshj68Me0zeaoYb6J7Zm8XE JWGPluQcNLv10Do8w/JCdbg38sSqXAPlfjN5Fqbn3mom1Mt1Ye+pp5qlFeGz NVOq/aawl9UDzebU/C7NqP4L1oS9qP+EmuzBwlzDhlxD1U53nB/OqTh7so54 JfdKPdSs9QnPkmbuHxe4tQ4= "]]}]}, {}, {}, {}, {}}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwt0klXDQAYx+HrOMfCqp1lx87eB/AFrGwoUypDAyVEMhQyJcqUDCmkSIiG W917G28lU0jGSBoMn0Arzz3nLp73vIv/8rc0NWfVjgWBQKCbeWJ/p7OF1YTo YohBYuNcfpDDVtbwjnJ2sos87lLHeWaooJkkxthNPReZ5QJPWMs4e+klzB56 eMYw20jmPZfIp4Ap9pHBOj5wmf0coJB7NHCFOSp5yno+cpD7XOUXVbSwkc8U 0U+EQ/TxnBEy2cAnrnGYI/ykmCxS+MJ1jlLCMR7QSDW/uUErm/jKcZqo4Q83 aSONb5wiSjcnGOAlL8gmlQlqOUkp05xmO+l85xZnOEsZj3jIHf5ym3Y2M8k5 HvOGt7xilNcE6eCfriappZU22gnSEWuOLkKEicSb7KGXPvoZIMogQwzTQg1l FJJJMitZwXKWkcgSEljMIhbGu/8Pk2t4bQ== "]]}}]}, AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{Automatic, Automatic}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{ "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True, "AxesInFront" -> True}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.427512893919826*^9, {3.4275336102960663`*^9, 3.42753361697768*^9}, 3.427533732281927*^9, 3.427533772150749*^9, 3.522377589832761*^9, 3.653108296444954*^9, 3.653108332091111*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[10]="] }, Open ]], Cell["\<\ \:8272\:306b\:3088\:3063\:3066\:306f\:3001\:5f8c\:304b\:3089\:66f8\:3044\:305f\ \:70b9\:3067\:ff0c\:524d\:306b\:63cf\:3044\:305f\:3068\:3053\:308d\:304c\:6d88\ \:3048\:3066\:3057\:307e\:3046\:3002 \:4e0a\:306e\:4f8b\:3067\:306f\:3001Directive[Opacity[0.5], Blue]\:3092\:4f7f\ \:3063\:3066\:9752\:3092\:8584\:304f\:3057\:3066\:3044\:308b\:306e\:3067\:3001\ \:4e0b\:306e\:30d4\:30f3\:30af\:304c\:898b\:3048\:3066\:3044\:308b\:3002\ Mathematica \:306e\:3000version \:306b\:3088\:3063\:3066\:306f\:ff0c\:5358\ \:306b Blue \ \:3068\:3059\:308b\:3068\:4e0b\:306e\:8272\:3092\:6d88\:3057\:3066\:3057\:307e\ \:3046\:3053\:3068\:304c\:3042\:308b\:3002 \:6761\:4ef6\:30922\:3064\:3068\:3082\:6e80\:305f\:3057\:3066\:3044\:308b\ \:9818\:57df\:3092\:ff0c\:76f4\:63a5\:8abf\:3079\:308b\:305f\:3081\:ff0c\:95a2\ \:6570 And[] \:3092\:4f7f\:304a\:3046\:3002\ \>", "Text", CellChangeTimes->{{3.427512929090148*^9, 3.427512938173478*^9}, { 3.427533811607028*^9, 3.427533822556622*^9}, {3.427533857250216*^9, 3.4275339407746887`*^9}, {3.522377637250779*^9, 3.5223776542734327`*^9}, { 3.653108368122836*^9, 3.653108402777623*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"?", "And"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[11]:="], Cell[BoxData[ RowBox[{ StyleBox["\<\"\!\(\*RowBox[{SubscriptBox[StyleBox[\\\"e\\\", \\\"TI\\\"], \ StyleBox[\\\"1\\\", \\\"TR\\\"]], \\\"&&\\\", \ SubscriptBox[StyleBox[\\\"e\\\", \\\"TI\\\"], StyleBox[\\\"2\\\", \ \\\"TR\\\"]], \\\"&&\\\", StyleBox[\\\"\[Ellipsis]\\\", \\\"TR\\\"]}]\) \ \:5404\:8981\:7d20\:306e\:8ad6\:7406\:7a4d\:3092\:8868\:3059\:ff0e\:4e0e\:3048\ \:3089\:308c\:305f\:5f15\:6570\:3092\:9806\:306b\:8a55\:4fa1\:3057\:ff0c\:3053\ \:308c\:3089\:306e\:3044\:305a\:308c\:304b\:304cFalse\:3067\:3042\:308c\:3070\ \:76f4\:3061\:306bFalse\:3092\:4e0e\:3048\:ff0c\:3059\:3079\:3066\:304cTrue\ \:306e\:5834\:5408\:306b\:306fTrue\:3092\:4e0e\:3048\:308b\:ff0e\"\>", "MSG"], "\[NonBreakingSpace]", ButtonBox[ StyleBox["\[RightSkeleton]", "SR"], Active->True, BaseStyle->"Link", ButtonData->"paclet:ref/And"]}]], "Print", "PrintUsage", CellChangeTimes->{3.653108408864419*^9}, CellTags->"Info3653140808-8810565"] }, Open ]], Cell[TextData[{ "e1 ", StyleBox["&&", FontColor->RGBColor[1, 0, 1]], " e2 \:3068\:3044\:3046\:306e\:306f\:3001", StyleBox["And", FontColor->RGBColor[1, 0, 1]], "[e1,e2]\:3068\:540c\:3058\:3053\:3068\:3067\:3042\:308b\:3002\n\:3053\:3053\ \:3067\:306e\:ff12\:3064\:306e\:6761\:4ef6\:306f\n\:3000\:3000\:3000xp. pgood \ \[GreaterFullEqual] 0\n xp.pbad \[GreaterFullEqual] 0\n\:3068\ \:3044\:3046\:3053\:3068\:3067\:3042\:3063\:305f\:304b\:3089\:3001RegionPlot[ \ pref, \:30fb\:30fb\:30fb] \:306epref \:306e\:90e8\:5206\:306b\:3000And[ \ xp.pgood >=0, xp.pbad >=0] \:3092\:6307\:5b9a\:3059\:308b\:3002" }], "Text", CellChangeTimes->{{3.427512971650626*^9, 3.427513160419427*^9}, { 3.427513280132244*^9, 3.427513281536263*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RegionPlot", "[", " ", RowBox[{ RowBox[{"And", "[", RowBox[{ RowBox[{ RowBox[{"xp", ".", "pbad"}], " ", "\[GreaterEqual]", "0"}], ",", RowBox[{ RowBox[{"xp", ".", "pgood"}], "\[GreaterEqual]", "0"}]}], "]"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["x", "1"], ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["x", "2"], ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "False"}], ",", RowBox[{"Axes", "\[Rule]", "True"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(x\), \(1\)]\)\>\"", ",", "\"\<\!\(\*SubscriptBox[\(x\), \(2\)]\)\>\""}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "200"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "0.4", "]"}], ",", "Purple"}], "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.427512857181445*^9, 3.427512879461773*^9}, { 3.427513180024802*^9, 3.427513198651753*^9}, {3.427533685492092*^9, 3.427533699600624*^9}, {3.427533949269483*^9, 3.427533953175652*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[12]:="], Cell[BoxData[ GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJx1mHt0VNUVxgNSH5RYwIg4PIyCOI0IgTLI++hKy6IsCgHRqoWIyEMMCg0E CKKEBCYKWAHHhrJY1GnFFpQAEkMJEw5vSMJjCAlDYhJCMnmTBEYjorXTcK6/ k7UOK/nnrO/OvWd/e+9vf+fePDpzwZTZ7UNCQo61Cwm5vVZkrTgVDDaJp341 om9MVK1cPefr5jT3NZG3f/OU0MpKye/gX1v3iaUzbiZ6nOX6fjD3g89Zz4lh Xb+I8UWX6ufBPA/meXCktYqk1+YddLh8cpG1r8bsD2Z/MPuD2R+83FrFmfR+ 3V0+r44HJh6YeGDigYkHJh74uLWKJzudrvU7juv4YOKDiQ8mPpj4YOKDiQ/u aa3i+8yOHzgDOzUfMHzA8AHDBwwfMHzA8AHDB+yxVsEKPzD8wPADww8MPzD8 wPADww8MPzA8TV5gc4UvGL5g+ILhC4YvGL5g+ILh21ZfzTqaPM0VvmD4guEL hi8YvmD4guHb1hyYOjT7btbV5G2u8AfDHwx/MPzB8AfDv625NefG1KmpA7PO Jm9zhT8Y/mD4g+EPhn9bPmf6jjn35pyZOjZ1YtbdzMNcyQdMPmDyAZNPWz5t +qbpW6ZPmHNo6tzUjdkHMw9zJR8w+YDJp61zzTx3zHPA9GHT90xfMefWnANT V2ZfzLzMlfzA5NfWOW2eo+a5Zp4rpo+bPmn6kDnX5pyYOjP7ZOZlruTX1nuN +R5ivieY57Z5bprnlHkOmD5r+pbpA+YcmTo0+2bmaa5D1P6NIlHFrZaXFN86 0Vfx9MsV1nWRo3iW6TkEh1v3iRL1XJEssFbxhLqer32I3x+xrotyhXNknrWK WrVm6nMbnGutIkT9pXmoJ5iV+3jOjHPS4qt5kRe8qAPXeR8mP3QBX/pOXPpu 8oQPfYYPfYUPdYUPfZty4EJTdmyNmJjxylfRMRXy5quRvRNCK0WV6t8V+ZTa 55xwKt6n5BEV57AYrPZNl9vUflsE6/bQdiluT5X4pOOHE+y7r8rx1r5irYpX LJda+wivtY8Ms/YR3Q6q5yUr17kvTtUrT4y2+MhSi5/IV3kVSOISZ5onKiIq oUHrEP11ej3so1h7k3jByvuOvoGZS+pNX+gDmDpQJ/qBTukjmDomWTx1v9AB 8w9ebuWt+wJP5gie4Eg1n4VyV+dFR2w59YI6cX2r1ReNyY+5oP70GYwOyZc+ ki++Qr/OWH3RmHkhf7sVX+fPHNNfeILpC/VAV9QDX0IP6BrM3Om8Z//jxYCt Ts8DOkE/6ATM/LLiX8wRmLr/aPXrjjmk7/BCF9SBOoKpI3WgH+YcUU/uoz7E IV/48/3OnOyw5kfrCP8F41fwRafEpS/02fRJ5oB41MfkTf3wI/JHN8yF6f9g dEPe5Es+9AtMPPyK/Exdg01dMxes+DIYX2SemDfqgp+AmS/iEBf9U0cwdSFv dIPe6ROYPjEf1I064Sdg5oV5oP7cZ+qMfPFv8sG/4YsvwQf/Jh46gQf647rZ L+qCnsz+0Bd4sdIPzk/mC77UnzlmX/hTb85XdEw+1BfdUSfyaPjF0Uybq/X/ bbaUzt+nvVqv51N/VxTWDopJvirvDVblBleW3PH/r769EnvG/LNEbv/0onSE Fei+4+tdmjbuirUf1v9fmdn187c9zu1yabuRrwVs6fo+e+ljyzzOU1r3ub2m XgmuzNNxVp35a5J7VKH226ffLnw86tYV7Z83Muo3xnqbxCPdcl8KxNXKpF73 r3N2bck7ZE6WY3GVnNBh7TdpN0rEnD+v6xfzjU8mXDhX6Y+/JM6OPdLgb74g V21v2uoM7JW2mk1jom4dEQMif3I5407ecV/cQxHdXDeviuTmuzY6v7ws7Sfn H3Ck14jhn44dYl9wRZYv3j3Nt7BJRKt4DWKWilet+zD/rdEJnqoqmT79wbfd Kxr0+0Hnv5/McAypE9ee6HTY8a2/9Tvrje82Owf7ZeKeX8Z7xtZqv594V/sF vs6t76s2f1aTv6BlLh8ePsreVCTvV/sViUa1X77s/cL3rweKyvS5Q53bP7Zw dqAoT/oml5ywjS/UutmQL0ZHHcgT7SJ6VGXXn9Xveasdx38fWtlybt7MPhBd 2vre13vEm38KrTysdVv0+e11hNY5fuM8kfpAQuhBkbT9+kq3Z6eek/Vq30zZ Z9nc+uz61vfQcxNj17lH5YtzzlWfxdqPa7/6jXWffNfKV+uOPHvFJS/xeb3a r7yqjvly8chXjjiGtPpIfoeRnVyp1eJi+MmHEz7wab+ijhF17lm+63X6PXn9 vnd2O6Y2ivfP35tlG1+q/YrzalxW0t7ov1TKmsK7A9lPtr5vs+//Hr1d73KZ 0f+nen9zud4Xf8uQPxTYIsq0vzRPndgr4YMCnfd/1O9emeRKnOuLztZ14r1w vJqvE3Kx3LfNGdijfZ46T1G/fyUjNlyK8zi3SPO7g77FDSzLt+Uc1n3XfvTM ZG8wmCPK1s/uERN1TvsTOlj9064BUbeKxOPxzXuiSwu0j6CrZbv+NiJquF98 3WfY1MCWYj0X6HLAtOISf3OduOy4ryD4XI04PdzutS2pkO+OufBj2rO1YpnV P/lyUu9a/8d+sWGMt7traZkcr+btrHhDzdspOf+B50858r1aJ5vnH0pxBrJE z/v+uMkZ2C+Ltt6OFyFY+83bMjk0vkqE725e5fnuqqy6yxfm2l8upuReG2pv KpFLlA+cFBeUDxyR1Tc65AaDu8TZ5M6TQiv/JTco/3DLrso/9orRe9652+Xb Kd+ydK2fW6j844JYkd13nH3gcXna0qUYo/zjvCxW/nFFLLb467m+pHzskoRn xNHUN3wbfNK7KeQj56ZqsX73v2f4Iktk8UMl36YNahBlC4tCE/5QKt97Nmqo fVKj/h5J9355ryu1Vq4/tmu6r6xFt9OHPR6zr0afs5+G9U12X2v9Phmg6tfS F5VPptYZ87pK9TtH+wK6pe79VT+LxDKVb77WOfN4pjiyq+tpv47DHDF/SesW feX4tsUXlb9fEY8pfy+UcWs+fCaqsNXvqLdd6TNTDFX+naH7Rr2XKP3lixTl 36dlP+Xfl3W92Xf5juP1/gcvypwut1Z6ulXoetuH5FX4P255n3/xng+deYUy 8fDIPjEXa3W9y8rDUpxTWt/Xq1L6FwRFjWyfneqxrW3U33/Mzaaql1e7R12W 7oL6iYEtrd9L42LqwmP61IsZYQcOOdIrZd2OJdX+NZUi7ei4ZM/Qqz+fb8Va F1/8dt/O2NNXxfzApuH2BcWyw3MpXVyp+aLqzbnX/fFeuV75+VFxj/LzLLn6 vxsnB2zbRGRC8mlbTqo8VDyoOa1dgxjb0NXjGFItGyd1y3RMvSzSH+lR74+/ KNdOu7zGPatazJv7XkZ0RrkMP/bDu57PKvS511GdNzkioM6blvfEuE+GRiVk CM7V6PAdL4VWbpR7I4aWBYNu0dg+viI7Vkrn77qvccadF/5SMcw+8KwcmNjl fefgEmHfNlM6phbIM2/lVvufrxSlE7bP9HUu1uf6/wEnBWmw "], {{ {RGBColor[0.5, 0, 0.5], AbsoluteThickness[1.6], Opacity[0.4], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNmHnc11MWx7+3R1JKyxMVyZP2QkoLWSaUpWxJIWV5UISSytokS3ZCWRrM 2KUZ2xCm7GaYfSyDDMYyY4YZZphsY6I57znv3+uZP87vLufec84999zzOd9f 98aZB85oVlXVHvFTF+3vgn4bdGfQsqD1gjYI+jzos6C7gto61zJoTZX71g/a KKiFvI1KzrUKahf9tkElaLlr2jCvDNZ8FdQhaFN4sa510AvRHxTUO6hP0JdB XwT9MGhjZaCzkzYh7+ugfwfdE7SJfHgbllzfMWgzddUHbe4c8upjTYeg5kFb uB/Z3eQzvjeoc1B37eqqjJ7ajuz2Jfs95Nero49rkbdtUC9lbB20pesHBDUo /377/YO2co51fZWBjQPVjaxtlMH4iKADg8YHDVY3+zqWlDc0aHvlon+YetC/ s35n33DnWLeTdsMboT7076AMxjs6x7qXgoYEfSdoT3nI2FX96OwV9mwc9OPo j3Q9vN3VjY2j1YHOPWyRNUo+vL2Uje29Q17noAe5v5L6xwbtqw7072e7W9D+ tug8wBbZ42xH68vR6h9vy5n28XzIPcg5bDk4aIx6J6kbnYc4x75DbeEdJh9b XnHvRO+VmCKOpmgfdk12LePDncPGI7UPW+rdx/7p7kHGsdqHLSc4h4xNS+o8 OmiqfGw8XvvYf4x2sX+afM53ojKIu9nqQMbqoMagmUEnycfGOfKRcWnQvKDv Bs1SP3pOsUXWycqBd5w6sWmuMpg71RZ7+8ZZugWtiP4ZnhMbT9cXjM90DrsW qBud87UXnZuX7GPbOfI533meAf1vaP8lQaepHx0XOEbn+a7FxoW28C6Uj419 QtdmQQ9F/yLnsPFcdaKPOOXd8DYu0y7s/VGVubV10LXKRcZV7sfefiG7e9DD 0V/kmTnT1fKx8RrtZv+V8tm/WD62N5Q869KgHyiLtTd4l9j1Pf3B+Gb52HK5 9p4ddJPjK4K+b4usG5UBb4k6sekWZWDvrbbYdXeVWAWu3OEZ8MHt7mcMdoFV zV0HLoAH4BJYBQ6BT2BXDfPaug7MAYs6SLwn8vtt6l/iOvABnAC7wJt6dTDX UXmdXHeFPuAOwCvwr0uVdrRz7fyQ8UzQE+4HO7q6n9wPBoBX4A24cF+V+NQg j3xP3gfPwI7OymCut+cgv9Swi7aGWb3lPVAlDvVzH5hA/kcemAA2kP/IY2PV zVx/ZYEJWysLTBio7EGOezrHOnAAfBrifuJ8qPKGO0YW+X5794xwjIwdHSN3 J8fo2dnxy1Vi0i5V6hip7Vspb7j6dpXHGCzYrWrCntGuHSVvB+dGqW9P1w1z H7K21G70gEtg0hht2ss95CPeO7mAnHSm4xo+7Vc14dC4qgmr9tfv5OqDqybc gjfGuYnqABNq2DVeWa9WiTcTqiZMQhZ5CDxoVDe5dlLVhJ37SpPcgz5wZLJy yfOHq+dIx+Ocm6JN5PajtfFYx+ie6hjZ5PNp6j/eMTqmO56i76Yr+0TH6DvJ 8etV4tAMbZ2mDs5Gjp9ZNeHNLPnk6jnaMVveVOdmV014M9czzFLWSP2yjzZx nzVMOM09Z7uWPWAUGAN+/CJoVZW1EPrIvQtcy575yiAXLnT/Ank1XDlfG8nn Ndw4V1lz5Z+nXRcqCx75mdz7ZpV4dnFQy7CrWcman1i8yD1gDvn5UnWTyy7X lkWO5zt3mfqvUge6r3aMLYsdYwd5eok6rnUMXoE311eJJ+DKUnXf4BgdNzpG 502OFypvcdWEMTdpx81VYhc88vit2nSLvBrG3KKM2123yH3Imqcd2LWuym+m Ou2+wz3kfnIxeXemfsF/T1eJW2BRXclvGrDluaBHq8TyZ6vM6Q1BPfx2auOY PE8ObsV3VsnvnberrAOoAZ4P+onrfh60sso83jXWflBljfHTKvN7P+0AQ8G9 bUquJQdvEv13qozJLtH/c5V19a+CHlfOL4Mec/7XVeIVddcWsf4j+78JerLK 2gM9j1SJs8s9bwttxebO2rrSs/KNsEo7qe3RRQ6nXsIGcteW0f9E+X3FzBnq eUpdK/VpgzqfVi86n1HvKv2CLuolbOYt/ExZy/Txc9p+t7xl3tXznuMB/c45 3qvybePDPwa9GLRh0L/0Czbzzfuid/c3/YtviSm+x+uMD+oQ6op/6OsV8vlu DxHVf6q8L3BucMncTq79fZX4h9+2LckH+16rEgPwIXf7vvf4mHtYv1beK8pH znae4wXPslY5exsXrymTe/iDd0H7uv0hJXMyb+Ib548K+rbKHHRW0LCSuegS 54klxtzJW97Lu553O+3DzjHKJM5Xu+Y9/f+S64fYvus8Z/qTcqgH+/v/xfvK 3Nvzvu0dvaWdF7vmL/rtZX2Eno+9J+7oQ+/1Iff90zOu1s5GffB3/fCR+1fI /9C9H8tj76dVxvx1QS1K1rjNnCe2Hpb/qX34n7uGu/qr5+Ks1Mact6VymiuT vLZGv6OXnEeuoiauxeMXxsAGJWvZ9kFblaxpN3W+znEr13TRr2u14R39hv/h f62cV13ziv75Rp818/+k9dT/pTZU2txMe7/VV2/af8PzsKZOv36gz9e5/07n vnEe/wwo6RPyY/F7oZ34yPz6/m9EDuGcnBf/9PS/rNbOrWeuX6d/sfMe99f+ V2puPV9vbu/i3bXwnnj/fF901FetzP+feX93Ob+BPsfGltqJDcy317Yefqug p5W6uNPWfr/QttF+6nPwgPcywDdS+3aibaVv2jo3wD56advZb2aftVuXjJX2 5j90oZ/zM8c3BGs6aNvAkvjU0bl659e3j+942/CH6ssO+pMY20Q+cjhPP+c2 dv4u7SOuBpXMlZ3k93L9diXrY/Ib9Ty4yNtnDnzlnTIHb4xx3sV+V/c2Kp81 uyiTfE3N/YHrGo1hcHSeb49akfphaMkcynh4yVzZYHzVeb+sob4k39Iip4bL 3ZSJDnRSw1JjIYP6Cjyl9rreWCNOqD0+kcc8fPrkFrCwh3EChvYyToifnqVJ Rk/XcO7enh1/9NGfa3xvxMlwbSDHgiN9tR986aOfOUdfz8jafq7H19wb30bg RT/tBNd6e198O/EtcZjxOcB43jloL31IvhimzPs4d0ms5bv87JJ2YcNQ7+LZ oHNK6hzi/Azjkbj933+5xj1xS32wjXFFjA0sTWsHOt/eN0IufSras0qe48lo zyjp76+Ui0ywiJqMM24fc6NL1gaPx8/ckvXO08RRSV8+Ee1pJeuj7sZTg8TZ wd9V0c4sWQMNcw0+eSzaWSXrqQ6eC3vBv229306+I+qNA6Ldr2SOPTfa80rW Zw9GO6JkPTU+2nEl3+Kj7CtZTx0a7cSS+fMRZJesuSZHO6lkDpwW7fKSOLow 2gtK1nYrot2pZO22Q7R7lMy9D0R7W8m6bMdo9yyJI6u9vxm+OfozPdOg/4tb 3i3vZ7D9CVXTmLrrKM5asraYjv6S2I/OCeo9JtplJfG4s/LxGZg3WJmnlrwn 7miBcUaMzSl5r9zplJJ+wSdXRHt5ybrz6mivKllTHl7Sp/jz4JJ+wSfE9VJj G1/O1p8Hlbwb7mVUtPuWrDfw0/36irdySMn3snu0+5TE3N2iHVsSQ6+MdlHJ uJxRMp6IpZHR7l0S908uGU/E0q7RjilZG3BX+3tfxPJ1xvO8knFMDCPjCOVg 4wnaeXrJd8IbuTbaa0rW3MhuVD7xeK8xSXydYoxxjuM8C+c41rOcWfId8gaX RLu4ZC1OzJ5k3P4XyFjFRA== "]], PolygonBox[CompressedData[" 1:eJwtlNdvDnAUhs+R3rly59bf4KZWrRuuKkWQWq29Wnu09t6jVuwRW42KGLVX 7YgQQowgCIKQiMSV5+3biyff03zfb53znrYqryypaBYR3aAAhmXEYfiCl8FS fCDU4TdhFL4BHuA/oBTvD8fwljAcr4H7+Ffoi9dDAbTg7yV8DoAT+A1ojy+H BrwWduO74AX+EjriK+FO+A6D8P3wDm8NQ/C1cA//BDvxHfAMfw4L8V56E34t fNZ4OBc+c4zuDr/wzTAYXw138fewDK+As/gtWIFPhvP4bSjBe8LBpvoVpX+j 7/TG7fg2eII/hX14n/Rb38JI/Ch8x6thLL4JHuK/oVhnQYD6VK6z4CPeHfbi e+AV/ho24nPhSniPaemaq9b14bWqmWqlPbR2NPwM76G7qMfqre50BO+SzsK3 cG9GpF09OoB3SvfiQ7jX/fSmcM+VJWVCWVCm1Juh8DncI9WmLL1WNapO10y1 ugjHlRV4pLPCvVKNVBv1rBbvmq6d3rA1XWPV9nE4K+qpeqnMzElnTNm6DLPS mVFWLsG8dE1VS9VwRnoGlP0LcAjvnK693tA7fabOegML0plQFq7ChHQGlT1l bnF6ZjQr12EKvijtytQavCr9dmW6Ep+f3ksZXI/PTt9dM7gOn5m+u2ZOszI1 3WvNzCp8evruyvQ4/BT8CWdW2eqRrq0ydhLq0m9pDqfxdmn/G17bpimL2uMM 3iE92/9gC16YjVs19mxieg+tVSYmpdfot/qf0TY9Y5otzeh/w8ywCQ== "]]}]}, {}, {}, {}, {}}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwt0kk3FQAABeDnOMfCqp2lY2fdSglpFJWxiIo0iAiZKUOGRPPAM/OeIRpI c1SGfb/FT/A5x+K75+7u5saVVufcjQgEAsv8Z68Pi5MkMEKQZT5xnix+kckp DrFKFdnkkkM3D6lmjb2hxxzmC3n0UMs6NQxwhG/kM8soFwjzmRVOk8hX7nGR S/ymgDSS+E4dhVymiD56aeAP9QySzA+u8Igm/tLIE1L4yVX6aeEfzTzlGSXM UcwZjjLPNcYYp40NWnnOC66zQCnppPKOG0wwyQM2uc9LXnGLRW6SwTGWKGOK aTrYop3XvKGc99zmLMf5QAUzhOhim07eMkQlH7nDOU4w7DM7BBlhlDHGmWCS KaaZIUSYWeYYop9WqighjzSSOEg8scRwgGiiiNz/7S4VrVdR "]]}}], AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{Automatic, Automatic}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{ "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True, "AxesInFront" -> True}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.427513201204914*^9, 3.427533700454338*^9, 3.427533957161646*^9, 3.5223776745335493`*^9, 3.653108459701469*^9}, Background->RGBColor[ 0.8597238117036698, 0.8597238117036698, 0.8597238117036698], CellLabel->"Out[12]="] }, Open ]], Cell[TextData[{ "\n\:3000\:3055\:3066\:3053\:308c\:3089\:7d2b\:306e\:70b9", StyleBox["(", FontWeight->"Bold"], Cell[BoxData[ RowBox[{ SubscriptBox["x", "1"], ",", SubscriptBox["x", "2"]}]], FontWeight->"Bold"], StyleBox[")", FontWeight->"Bold"], "\:3059\:3079\:3066\:3068\:ff0c\:6b21\:306e\:95a2\:4fc2\:304c\:6210\:308a\ \:7acb\:3064\:ff08", Cell[BoxData[ FormBox[ SubscriptBox["S", "0"], TraditionalForm]]], "\:ff0c", Cell[BoxData[ FormBox[ SubscriptBox["B", "0"], TraditionalForm]]], "\:ff09\:306f\:ff0c\:3069\:3046\:3044\:3046\:6027\:8cea\:3092\:6301\:3064\ \:3079\:304d\:3067\:3042\:308d\:3046\:304b\:3002\n \n \ ( -", Cell[BoxData[ FormBox[ SubscriptBox["S", "0"], TraditionalForm]]], ")*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "1"], TraditionalForm]]], "\:ff0b( -", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["B", "0"], ")"}], TraditionalForm]]], "*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "2"], TraditionalForm]]], " \[GreaterFullEqual] 0\:ff0c\:3059\:306a\:308f\:3061\:ff0c ", Cell[BoxData[ FormBox[ SubscriptBox["S", "0"], TraditionalForm]]], "*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "1"], TraditionalForm]]], "\:ff0b", Cell[BoxData[ FormBox[ SubscriptBox["B", "0"], TraditionalForm]]], "*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "2"], TraditionalForm]]], " \[LessFullEqual] 0 \:3002\n\n\:3000\:3053\:308c\:3092\:8003\:3048\:308b\ \:305f\:3081\:306b\:ff0c\:3082\:3046\:4e00\:5ea6\:ff0c\:8d64\:3044\:70b9\:304c\ \:3069\:306e\:3088\:3046\:306a\:4f4d\:7f6e\:306b\:3042\:308b\:306e\:304b\:773a\ \:3081\:3066\:307f\:3088\:3046\:3002" }], "Text", CellChangeTimes->{{3.427513232888138*^9, 3.4275132352124033`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", "%7", "]"}]], "Input", CellChangeTimes->{{3.396422695649149*^9, 3.3964227015676594`*^9}, { 3.427513258180607*^9, 3.4275132585207033`*^9}, {3.522377692249452*^9, 3.522377694882955*^9}, {3.6531084781026297`*^9, 3.653108480523535*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[13]:="], Cell[BoxData[ GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJx1mH1wlNUVhxd1rOMQK0hBU6AoH11TCJFmkS+5dnZkWsZqoGDtFIPFYtW0 woSvJCCQiAuGMHylRlPGcdtiBQqRCjhAmEs6MZAQwhI2WRKTTSAbAgESJ0NA 2tpU7uU5zNxO+OfOs+x7z++e8zvnvptH5y2YOf8uj8dzrY/Hc2td9PKN1cWB 86rlyIpjPT2duurz92fGtbYKP/7dSSNS/ZeE17z6Zfee4BXh26twUv+/p0ZS omqd/Z5mf5j9YfaH2R9mf5j9x9jnZH+Y/WH2h9kfZn8465XXD/vyI6ra7iPx YOLBxIOJBxMPJh5MvGV2X4kHEw8mHkw8mHgw8eDSfaMezo+E1AQbR+LDxIeJ DxMfJj5MfJj4MPFzbFyJDxMfJj5MfJj4MPFh4sOD+x6/FPOVqkqrQ/TA6IHR A6MHRg+MHhg9MHpg9PzIrqIHRg+MHhg9MHpg9MDogdEDFx+6f0Oga6f62q6i D0YfjD4YfTD6YPTB6IPRB6MPRh8r+mD0weiD0QejD0YfjD4YfTD6esubq9Nd 0QujF0YvjF4YvTB6YfTC6O2trm4eXZ3uil4YvTB6YfTC6IXRC6O3t75wfejW 3c2rq9td0Q+jH0Y/jH4Y/TD6e+tjt29cn7o+cPPs6nZX9MPoh9EPox9Gf29z 0J1Dbt+7feb62PWJm3f3HO7KeWDOA3Me5z1H9TbH3Tnqzi13Trh96Prc9Y1b B/cc7sp5YM7jvKep3u5F915y7wV3Drtzz50rbt+6feD6yq2Ley535XzOe6fq 7Z5371n3nnPvFXeOu3PSnUNuX7t94vrMrZN7LnflfL29N7nvMe57hHuPu/em e0+594A7Z9255c4Bt49cH7p1c8/prmUmfrMab+J0aJjfEzVGf71abXS16R8Y /WFVYb+nq83/V6gf2s/1CcOH1CW7ao/5t6fY/Zx9ztvnJS77rLDxVKONr5Ot PoUefi+wD+/X6KFuxKVO6KEu6KEO6CHv6CHP6CGvUZOnJtX3tQFb07yd2mt0 1akXDp7uLE+7qNONrmr10f0bn/UWndPLjK5jKmz2q9EDzP77VMjEP6oHHr61 f+H/fc4+TxldVZq47LM9rs/aYPEFlWt0Neg5xf4Ef+ZVqW+90d0u54Jz7PfV PfP//GJXfLvUe4SJH5N7Ha608dRzB+buT0ltkfyTF/IIj7F6VZLNi9SHPNMP cIk9rwrYPEn93LrBHxouVKx8Thz6ER5n8yq6qD/nxicwOsgTOofZfMg8gLNs nfSN3yQNzYxrFf/U2nyLL2HysvvBRSXxFZcVcfZaFh38XsVfO2y9helP6vNv G1/qw1zDRxesf4TpZ/KCj8gb58S/nBPmnNQPn1I/6oCvqQNMHagjfUA98Qmf EwcmDvuii33xMf1EnmDyRL3JK/Vm7nKubbafhekz8jLd9ofkhblMv86080GY eYcfPLYfpY+Y19Tl9rwRZj6ig7/XMCfm2nkgzLyH8Rvnxj/4gzjklXNTP+rA yvfIL/vyHPnh/JwX/fiZeQXTH/if/sC/1BmmzvidOlMX5hWM/6kj/sdH+BDG h/gOH7Iyr2D8zXP4G130Ccy+nIO45Il5BeNf/Il/8Rd9DHNO/Ege8BPzCsaf +I+5h5/oExgd+I/6cT9yLu5H8o8vyBM+In/uHMGnnB9fcz7uR/RzP6KP+5s8 8n7BPujFb7xv4Gv0Uzfyhi7Og5+om9snrm84Jyt+wbf0G3HwB33DvpwDP/A+ Qz+SH+rP+w26yRf15v2QPiZ/T+xYWZD2SYPMn+X/mnyt/HKN3F+5BV3BlNQq uY+GTvrDr+Naj4ovc1un/i0l9U/SB8v6TH6lK36f9J03+lhGceCY9PmJIbOa elZVi++yK9/LCU6pk3n75PK6kf6bTTI/x67u925gXKPKLfrk5UjSVZ15uqo1 tqRWhT2vHvEtvqADzzz8TiD9lJr412nJ3gVNOv7ilqn+myXq5LSSq7Hu03pv wvjmnp6gyt7euS3QtVez8r3EpG/yA+llsi/PpQ9KGJh/45x6u/vuzYF/nNXe st8f9O27KHHOLy6aE1nYqUbPaWiMdX/73rF+0X7ftXY5p/efBW9ENrXpxz/u +1JXYUTm4dLdH0zyTwyrUENS//wnYzLP0h+afcwXbtaLbpQfTImGZB5mf7M7 0X+zQiXbOJLXjPIRP/WODeuszQ+MSfWXig+8T88I9fQcUpvtc/L3v8RP37o3 P3JIjwuNKEzz7hLf1W+7tSao+rNm1dQx8EXBQ5lxh1XO9q9WBYt3is/zfKU/ i2s9pIdn/O5y+eU7fVH1XNr64JSwqgpkf5zmLZW++rH9nl75yMQp3s568c3Q F75+rau+WQ1Jf3tpJBSSPg69cf39wLiwXjx5bokvOSZ9Gb5nct/8gjZ1ZljZ I5kbIjIPA3ZfndAe/G3kq3bxad5nbxX5ZnWod0/ddyR+evTOPLzdZ9GF9XGZ P+/QTbOe9+T/MirzLzKj8Yv46XUyT5gfOSZOu370L4WPZW6olnnCOSuN7pgO Xyz6757gMdHN/Eg0eajXpwbOXhhJ2Sd5I69rTF4rdMKm2vTiQKF235vrd93i SSp9bHM4vuKo+Ebmh6l7hWrOm//9VH+VzBPmxxrjh3o1ckn3pynRGpkn+CbD +DKmvhw+YVZXYYPME95nEo3/2lWD8X2Tyuu7/HjPgk69zuT52zjnB6wNzOzQ o0yfnFW1L00YmfrZRV1t6hZRo5OrW2J/bNMLTV+dVsOKurOLr5/Tg40PQmrp Oxuf9tc166WmD8tUrenvWn3C+KpUrbR9o/ubvt2rTps+LdHLjE93qWnW93qT 6e+gfO8p4/ud+k3rW3kOHStMH5Xq49Z3aqrp71Oacy42fRnS8bEjnbGaZtE1 6vXCGXFLLqgE0+cRHdri2RrY0qbyzJxq1A2DGq/teeKqajY+i+p1P/GP9z7f oaZ5NiWn3n3n9zpzPm/wrqXB/3RKnfi9x3xJtP6WPuP3HfMkw/aL+IC6MT/o E/oaXzAv6FN8Jr5jPtxemSP4mnlAHHxM37Av52BucS/R75V2Hkqf8HsL3Tl2 vqqcIQ+sD/RvUEn7667v6XdF/BW2+deVb55oi82uUVn3Fvwibnar+GuorZ8e be6Tk1In/IWOleY+0eID/MU5t5r7ZLPCZ/iLPI4398kB8TH+ok5rzX1yXPoE f6Vb/6usHaWXY987oyv63VxVPLBF/OW1/aOSXvzOxkB1nV59dPLw1DOXxF/N tv8U/Zhr/abD3oWf+8J1KtE8d0kPzRozIH/QGZVh4rTo0Hs152L7j8s9V5b+ 0Xh/5gG5F1OG7fhVXOtmuUc77lrSUp6m5d6NRdUE79iTmnva++E87ZtVc7sO rSr67PZ5kQcbtK3bFfU/LKgnhg== "], {{ {RGBColor[1, 0.5, 0.5], AbsoluteThickness[1.6], Opacity[1], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNmAnY11MWx3/XVohEKCIltKdFaY82RbTRikq7KfsSyTY1KOswkUGi7Euy 79sYYzaDWQzGGGNm7EuGwRhzPs7n/7w9z3ve87v3nnvOueeee7/n/ltMO2b0 /I2qqro2/m0cfEKpqoODfhHfI4IzVj9oy6BNgjYN2qJKWdr/DKoXtFVQI8eQ 3bzKucg1VAd928iR+ySoc1CvoJFhq2vQL+N7e/VtHdTEOeh+L2i7oJ2CdnC8 obyeNnZWpnHQrsrtGNSlpE76m8mxs4u8JtdQe81tY3+fkjZbBu3hfOa10h7t 9kG727en49jfS46+Do6jo21QC3V+6HeboI6Oo6OTHB3dtYGObs5vFzQ6fOsZ 9Ov43rekji5Bo+K7e9Cv4rurutvq4076vY860NtD3djfV97JfWpkTHq7X+jv q1586SdH337qQscA/aY9JnzpE/Sb+B4a1Ecd/Z2H3GBzATtD5H2kLto7wHnY HO587BwcNDBoUNAhcvQd6Dh+9S6pn7GRjmNnjHqHSf3UO8px/B0tR26sctg/ VI6dsaG/f9Bv43uKcoxPCBqhjxPl+PhF0LigaUGT7MOvw7WNzcn20T5SX9F7 hONj3MOW7u1R6hwfNFc55s1WF7pn6BO+zJRjf7rzGJtlH3P6lfSfsTnqQO/R 6math4bM/kEvxvd694I5+5Vc3/ygY/UPOydoGzvH6xPt04LmKX+i4/h+khz7 pzt+TNAprhNfTnac9kLHsXmG/Ligc5Vj3tnaQPcix/HlTDk+fqU/C4LOso85 5+krvpyjDvQeFusdHPS7+B5Uct6SoOuDLgv6cdCP1Mf8oSX7VwYt0w/sL9Xv Rc5ZrJ4LHceXi+Ss43LH0X2JPrHWix2nfYXj+P4T+flBP1UXsiv0AzvLHb8g 6Er5UvtON8ZX2bfM8YX6fbU60HuNuvFrXKz3gKCX4nuVa8P3G+T4+GzQvUH3 Ba3WV3y50XHaN+kT9tc4Tvtm+1a4n+QauXWb68SX74KuC7oj6E6/if/d7hN+ 3a+Nm/VltXbWOo6/98jx61bXjI119jHnLnVf73rWqPcBdd8S9KD8VvkKdT1k H76Pj5gdGPRyfD+u3+h+Qo7vz+k3un8uR/fPtM3YU64B3590Hu1n9Ju1Pu04 bc4Q55dz+7z68AusrWEv9QK1AhgM5m/u+PCSMX60yjFkwWDqBmoEsOVfVdYQ DaqsFbZwfq1WwMZjG+zVHaFzfdBrVdYL4Pp26gbDt3fOjrYZA+vAvPerrCGa VnV1AGPgJBjfQptNNpgPdu9iu7ntAVXe98PVy73bUn1gNxj/UZW43rpKvWBv G3XtqVyt/mjm/HbKMQb+dtC/VtqA2ivXyvH2VV2dsWdVVzd01B6Y2UU5MLaG +fBujoOnfdTXQ7laHdCjqsN45MB/cBkc/bTKGq6n+vor190Y9XcOmDm0qsP1 werdTznqArAZzKCWoY6p1YXIDjIuNX/7qG+I9oZpo797Qnsr48s+f14lJh1U 1dUHB6t7pG3mg6U1nIePUtdYx2r4PUHbo5wP5oOR4O4Ix8HKgc4ZoY1Jzmce GDpZ3VOqxNEvq6wJpmr/COVqdQay2OAsTqvq8HuGfkzWBranKzfB8emOzXIO srNtY2POBm3w7QR9AlfBU7AdLJ9X1eHxifrBHTFfG9y5NZw/1rGZ6qvh/PHK dXEve2v/ZPUyBu6d4XwwBbz5uko8PrVKP8DPBfp3ivPnK3ua8Zur7lodsLCq w/hF+nWWbdZztm38OMc2es+1jV5ws4bh8CVVHR5fqP3zlcPeBbbRdbFy2AYz azi/VDlsXKLct0H/Dbq0qsPg5VUdfoOF1AVg6GX6cbntM/VlmT5e4Ri2wair 9Wm5urB/lTaYs8L2hcqu0KdrnA+OgSn3KgeW3aQfYN1K/Vhlm/m3KFfD+1Xa Bidr2H6jY1eqr4bta5Sj735t41cNM2t4vFZ74Bq4WJXE+9urxPnvMcQ13Ob8 lcoyRm1CTXad/q1VF36t08Zq173O/VnsulnbA/o3JHTsbB0IboOFj2gP/HxQ e2B5Dd/gj1Z1uM4YtSR15GJtg81PafsZ2/jyrG1sUweA+X8JeqXKN/UhoWNP 3/W1+uA5/Xje9lp1Pxn0RtALVcrfpz5s8PvACxnWqlv829g3+5tBv6/yvXm3 OlhDD+oC36F/DfpDlW/VvtHX0Pfg34L+VOW7aVj0Nbc+/EfQ61XWPO9Uifn0 vx30apVvjQHgv2+uvwf9ucqYD4y+HX2P1Gos1n1Q9O1uHUWtjjz3Cb8/ECvq EN7OrIU6oVd8b+n7mjcOdrmfec/+sUrs492H/+AL73HWCO6Ps07h/L5VpTzr pZZjXeRk65KxJs6bltwz4tmo5BzktyoZO3xo4z5SM21fMnasvWnJuLDeiY6D gS1Kxo647VIyRsTn3Sprrwbq5Hsz9/AD1w5/3+9XnIN8W/edWmqPkvtEPCfb R03UrmQNtJvy6NnWfvKB2ugIOXXK7JJniXP0cZVzieHeniPGPquy5iDmU0rW HtQIHUpi/P5B7UvK7G28P1Oe/fm3ezStZD0wwrkNbXc0l8Dg6XLw7ZsqsYc8 6WRegUP/qRKzpzqX78Oq3P+P9f9V5abq25b6PVMdC9SJ/h+Yv99o639VYsCl xoHvHwY1Lrn37Htnzwt33GvOQb5wQEvm2FzH71Ce/murnLebZ20T95Q9Yg83 tq6Gb+IZZw83U6aBayHO9YNv7hmv7/6y7+wt3y3MtY1K5hh99ZVH96bqZ8+3 cC4xQn9neQPP4Ouu7XZ92Mp+9nxr/WE/t/FugTfyu4l7R5yJPd/z3MMdSu5d Y3OAb3Jq25J5RV9jY/6F7XHm1OfmFfqaeOewV7uW3C/6mtrPPu+kD9uYe+hv VvJ8cjbJdXJ+sbyZ/c08C+jczX1nH9e7ZurN79zX65Rp4f5SV3M3kZPcf61K nlk47YervFfauEf076HMXt45m7mPbbxf6GOMu6vWrmfOtDVPyJm23gufe97W u1/tPQvkQzv3nRxo572A7tbqJwfau79fe2a+ct0dNtijju7dl57JL9yXTsac +O1tDNHZyxzD527mPPHrbGwrv4nr4SXvON6Kk0res12c19W5EH28O7o6Rm5P Uob7c2rJ+6u3ZwN9vP/wpaf+HFnyfuQthF3eqNzD8B6enR72tzCGPfz+1vuC PEIXOrqos6c50NO1c3a4r0b7TQ7hF++ko0vWLpw13mh9PUf4T5t79aiS92k/ c7mvecjZoG+8MWxpPHkrDfAcbec3sjNK3rm8McBu3hucTeqowZ6FWSXvTeqh GcpMrZIz50X9wUbtPA5UD4Ru3gfoQscSdaKf+xaOPc7aAPWMM2eG6MOcklhF jcg39SL3LZza5SXPF3UG9d488q7k7yMH2v+yseVepi5s7lzO7EHKMRdinJqw rzEntpwx9NU3H0aZG9R4/BZTT7t8x9/3evF3ZZU4PtKc5Lweojy5OdL8PNh+ zh31wCjzbZjrRR/vYd6HR5gbY8yHRcEvK3VYdpjxrOF9a/OR7zb2HWk/53mm e4GdccZ2f/eb/QPjxhln9uuwDeTnuC9g/VhzjD0caz6AxYeaJ+g81Pwh3uPN c/BlvHuEL7M2yI1Z5h46jzLnOcdTXXsfvzk/3HHTtIsc39Qb3HdTlB9kPi/w zNHfyzzlLEzznBKffc27OcZkqG3qJc75bPunGyvWVatj+KZmn+Cect9wj1Gn wQ83f/hd7U5j/GnwW0vGbLi5eod5Rz5vZNyONocvCnqrJF6SP/PM+UuD3i6J r58R45J5cQ66S9YEnwfdXTL25wV/o2QdsBhfStYcS4PeLInxlwe9U8RRbZHn H5DjJXP8k+A3mwvkNvcv9/JEv8nz91x/U3N+gnq6GxPiBK5NVL42n7qaeoc3 D+cCbJhr/nwcfE3J2vOj4DeWvF+nmTPkw4fBV5U8WyuCv1vyfpxrPNGzHNsl awh0cb64e+8yXsTqNmNKPFeXtI3s9SVtoP+WknvJPt5Q0if8OSn4mSVx8OTg Z5W8n68rGUdi+GzwZ0rW9zeVjCnxXBv8uZLvlvnBTy1ZGxwb/LSSOH5K8LNL 1hUnlrwXuBOOD76wJF4fF/z0kph+QvAzSmL3/cHvM77HBF9QspZ4OPhDJd9F 6L5a/dhcol3WcaVrYX1XuMZ7g68r+b5C37nqxPdr9B9fztefe0qukzXi18X6 hu/L9P/x4I+VfHc9GvyRku+xp4M/VfLd9WDwB0q+354M/kTJN9j/AVvHass= "]], PolygonBox[CompressedData[" 1:eJwtk9dOVlEQhc8QIEDAAEGjRI0YjVz6DFx75YUP4LUB+wMoNmxgwY6KHRSM vStgxYZKExRFiiJGo4FoNBq/lZmLL7P2+c/5996z1hQtLJtfmpIkyTxIhQpL kivwHp1DPQCjMAfSebaW+gYyYAbrVuojvYP+AqvRPZAK+ayfUB/DV/Q3WIe+ BO/QmdT7cA9aWb+Fzehr0I/Oo26APsiGuTzbpLNBLpSwbqM+hzH0OLSgG3VG 9DDUoM+Z/3cx9TwchHbWfbAP/RlmaV/W5dQL5r+lUbfCByiABTx7SX0BP9G/ 4Bn6KXxH/4Dt6FswgJ5C3QaDMBkW8ayd+gp+o//AQ/QD+IQegUr0De2Jnkit M99Te72Gm+hT5lp77Na38gJqEvdGPc4Mj3qhLLxIVx9gcXiXFd6sN9fyqJPa AX/R/+AsuhsserqTOgxToZz1afM76S490GD+H/q2N3HvlKmc8FDZUI/TIiPy Up7nhae15plSljrgpLnH8rYbjpv3XL3ugqPmGVO2OmEPuhmG0EXqE5RGdlOU O1gSWZoQ3m001/JQWV5j3itlWtnaov5FxvZT75pna7ZyCksji3pHs6LMKWua mSY4Y94Lnek6+oT5XeTxVfQx87v0wyHzTCgLyuhtdL15bwfhMvqI+V01o8rO KvO7KUPyqguS8OwiHDbvpWbuI3pFeDc9vN5lruW5vK2GaeHxCKyMbM00nxX1 QHfXzGgWqmCS+Uxo773m7+oMyr5mQrOgGRiAZeazpG+GYLn5bBSaz8YOc60Z UbblqbxUxjWLmhHNRkGc9Y55b3Tm/5t4uXM= "]]}]}, {}, {}, {}, {}}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwt0skz1wEYBvAf6dTJza1pOji6du3sZsbduNakSLKUpLQgSiplaVERKrRQ 9j1kaxepUJaQ6g/o851x+Mz7XN7LM8+uxKS4A2GhUKiR/UKQh+kXBmikiUpW qeAowdMnTjLIEDf5RRXNPOEU0+SSThKfOc0rhrnNGrd4yjPOMEMeGRxklrOM MEo169zhOS2c5wvnyOQQc+TzmjHuscFdWnlBIV8pIItkvnGBcSao4Tf3eUkb xXyniGOkMM9FJpniAZvU0k4HJSxwieMcZpHLvOEt9fyhjk66uMIPSskmlZ9c 5R3vechfGuimhzKWuMYJjrDMdT7wkcf84xG99FHOCjfIIS3oyz52Bx24bbTT QSdddNNDL33BlhhgkCFaqaOCYnJJYx8JxBPLXvYQQzQ7iSKSHWwngm2Eb+33 Pz+Kc4E= "]]}}], AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{Automatic, Automatic}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{ "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True, "AxesInFront" -> True}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.4275132593264313`*^9, 3.427513466692479*^9, 3.522377696100113*^9, 3.6531084813156776`*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[13]="] }, Open ]], Cell["\<\ \:3053\:306e\:9818\:57df\:306e\:7279\:5fb4\:306f\:3001\:9818\:57df\:5185\:306e\ \:70b9\:3068\:539f\:70b9\:3068\:3092\:7d50\:3093\:3067\:51fa\:6765\:308b\:30d9\ \:30af\:30c8\:30eb\:304c\:ff0c\:70b9(1, 0.5)\:3068\:539f\:70b9(0,0)\:3092\ \:7d50\:3093\:3067\:3067\:304d\:308b\:30d9\:30af\:30c8\:30eb\:3068\:ff0c\:89d2\ \:5ea6\:304c90\:5ea6\:4ee5\:5185\:306b\:3042\:308b\:3053\:3068\:3060\:3002(1,\ 0.5)\:3068\:539f\:70b9\:3068\:3092\:7d50\:3076\:30d9\:30af\:30c8\:30eb\:306f\ \>", "Text", CellChangeTimes->{{3.427513324880722*^9, 3.427513367417824*^9}, { 3.4275134361698513`*^9, 3.427513448438361*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.5`"}], "}"}]}], "}"}], ",", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01`", "]"}], ",", RowBox[{"RGBColor", "[", RowBox[{"1", ",", "0", ",", "0"}], "]"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "1"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "False"}], ",", RowBox[{"Axes", "->", "True"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(x\), \(1\)]\)\>\"", ",", "\"\<\!\(\*SubscriptBox[\(x\), \(2\)]\)\>\""}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}]], "Input", CellChangeTimes->{{3.427513380435171*^9, 3.427513416374033*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[14]:="], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[0.01], LineBox[{{0., 0.}, {1., 0.5}}]}}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.427513385398528*^9, 3.427513417473172*^9}, 3.427513470071554*^9, 3.522377707501441*^9, 3.6531084968257217`*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[14]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"%", ",", "%%"}], "]"}]], "Input", CellChangeTimes->{{3.3964227134447374`*^9, 3.396422717330325*^9}, { 3.4275134854655867`*^9, 3.42751349028158*^9}, {3.522377718049808*^9, 3.522377720717373*^9}, {3.653108505830964*^9, 3.653108508945345*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[15]:="], Cell[BoxData[ GraphicsBox[{{{}, {{}, {}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[0.01], LineBox[{{0., 0.}, {1., 0.5}}]}}, {}}, GraphicsComplexBox[CompressedData[" 1:eJx1mH1wlNUVhxd1rOMQK0hBU6AoH11TCJFmkS+5dnZkWsZqoGDtFIPFYtW0 woSvJCCQiAuGMHylRlPGcdtiBQqRCjhAmEs6MZAQwhI2WRKTTSAbAgESJ0NA 2tpU7uU5zNxO+OfOs+x7z++e8zvnvptH5y2YOf8uj8dzrY/Hc2td9PKN1cWB 86rlyIpjPT2duurz92fGtbYKP/7dSSNS/ZeE17z6Zfee4BXh26twUv+/p0ZS omqd/Z5mf5j9YfaH2R9mf5j9x9jnZH+Y/WH2h9kfZn8465XXD/vyI6ra7iPx YOLBxIOJBxMPJh5MvGV2X4kHEw8mHkw8mHgw8eDSfaMezo+E1AQbR+LDxIeJ DxMfJj5MfJj4MPFzbFyJDxMfJj5MfJj4MPFh4sOD+x6/FPOVqkqrQ/TA6IHR A6MHRg+MHhg9MHpg9PzIrqIHRg+MHhg9MHpg9MDogdEDFx+6f0Oga6f62q6i D0YfjD4YfTD6YPTB6IPRB6MPRh8r+mD0weiD0QejD0YfjD4YfTD6esubq9Nd 0QujF0YvjF4YvTB6YfTC6O2trm4eXZ3uil4YvTB6YfTC6IXRC6O3t75wfejW 3c2rq9td0Q+jH0Y/jH4Y/TD6e+tjt29cn7o+cPPs6nZX9MPoh9EPox9Gf29z 0J1Dbt+7feb62PWJm3f3HO7KeWDOA3Me5z1H9TbH3Tnqzi13Trh96Prc9Y1b B/cc7sp5YM7jvKep3u5F915y7wV3Drtzz50rbt+6feD6yq2Ley535XzOe6fq 7Z5371n3nnPvFXeOu3PSnUNuX7t94vrMrZN7LnflfL29N7nvMe57hHuPu/em e0+594A7Z9255c4Bt49cH7p1c8/prmUmfrMab+J0aJjfEzVGf71abXS16R8Y /WFVYb+nq83/V6gf2s/1CcOH1CW7ao/5t6fY/Zx9ztvnJS77rLDxVKONr5Ot PoUefi+wD+/X6KFuxKVO6KEu6KEO6CHv6CHP6CGvUZOnJtX3tQFb07yd2mt0 1akXDp7uLE+7qNONrmr10f0bn/UWndPLjK5jKmz2q9EDzP77VMjEP6oHHr61 f+H/fc4+TxldVZq47LM9rs/aYPEFlWt0Neg5xf4Ef+ZVqW+90d0u54Jz7PfV PfP//GJXfLvUe4SJH5N7Ha608dRzB+buT0ltkfyTF/IIj7F6VZLNi9SHPNMP cIk9rwrYPEn93LrBHxouVKx8Thz6ER5n8yq6qD/nxicwOsgTOofZfMg8gLNs nfSN3yQNzYxrFf/U2nyLL2HysvvBRSXxFZcVcfZaFh38XsVfO2y9helP6vNv G1/qw1zDRxesf4TpZ/KCj8gb58S/nBPmnNQPn1I/6oCvqQNMHagjfUA98Qmf EwcmDvuii33xMf1EnmDyRL3JK/Vm7nKubbafhekz8jLd9ofkhblMv86080GY eYcfPLYfpY+Y19Tl9rwRZj6ig7/XMCfm2nkgzLyH8Rvnxj/4gzjklXNTP+rA yvfIL/vyHPnh/JwX/fiZeQXTH/if/sC/1BmmzvidOlMX5hWM/6kj/sdH+BDG h/gOH7Iyr2D8zXP4G130Ccy+nIO45Il5BeNf/Il/8Rd9DHNO/Ege8BPzCsaf +I+5h5/oExgd+I/6cT9yLu5H8o8vyBM+In/uHMGnnB9fcz7uR/RzP6KP+5s8 8n7BPujFb7xv4Gv0Uzfyhi7Og5+om9snrm84Jyt+wbf0G3HwB33DvpwDP/A+ Qz+SH+rP+w26yRf15v2QPiZ/T+xYWZD2SYPMn+X/mnyt/HKN3F+5BV3BlNQq uY+GTvrDr+Naj4ovc1un/i0l9U/SB8v6TH6lK36f9J03+lhGceCY9PmJIbOa elZVi++yK9/LCU6pk3n75PK6kf6bTTI/x67u925gXKPKLfrk5UjSVZ15uqo1 tqRWhT2vHvEtvqADzzz8TiD9lJr412nJ3gVNOv7ilqn+myXq5LSSq7Hu03pv wvjmnp6gyt7euS3QtVez8r3EpG/yA+llsi/PpQ9KGJh/45x6u/vuzYF/nNXe st8f9O27KHHOLy6aE1nYqUbPaWiMdX/73rF+0X7ftXY5p/efBW9ENrXpxz/u +1JXYUTm4dLdH0zyTwyrUENS//wnYzLP0h+afcwXbtaLbpQfTImGZB5mf7M7 0X+zQiXbOJLXjPIRP/WODeuszQ+MSfWXig+8T88I9fQcUpvtc/L3v8RP37o3 P3JIjwuNKEzz7hLf1W+7tSao+rNm1dQx8EXBQ5lxh1XO9q9WBYt3is/zfKU/ i2s9pIdn/O5y+eU7fVH1XNr64JSwqgpkf5zmLZW++rH9nl75yMQp3s568c3Q F75+rau+WQ1Jf3tpJBSSPg69cf39wLiwXjx5bokvOSZ9Gb5nct/8gjZ1ZljZ I5kbIjIPA3ZfndAe/G3kq3bxad5nbxX5ZnWod0/ddyR+evTOPLzdZ9GF9XGZ P+/QTbOe9+T/MirzLzKj8Yv46XUyT5gfOSZOu370L4WPZW6olnnCOSuN7pgO Xyz6757gMdHN/Eg0eajXpwbOXhhJ2Sd5I69rTF4rdMKm2vTiQKF235vrd93i SSp9bHM4vuKo+Ebmh6l7hWrOm//9VH+VzBPmxxrjh3o1ckn3pynRGpkn+CbD +DKmvhw+YVZXYYPME95nEo3/2lWD8X2Tyuu7/HjPgk69zuT52zjnB6wNzOzQ o0yfnFW1L00YmfrZRV1t6hZRo5OrW2J/bNMLTV+dVsOKurOLr5/Tg40PQmrp Oxuf9tc166WmD8tUrenvWn3C+KpUrbR9o/ubvt2rTps+LdHLjE93qWnW93qT 6e+gfO8p4/ud+k3rW3kOHStMH5Xq49Z3aqrp71Oacy42fRnS8bEjnbGaZtE1 6vXCGXFLLqgE0+cRHdri2RrY0qbyzJxq1A2DGq/teeKqajY+i+p1P/GP9z7f oaZ5NiWn3n3n9zpzPm/wrqXB/3RKnfi9x3xJtP6WPuP3HfMkw/aL+IC6MT/o E/oaXzAv6FN8Jr5jPtxemSP4mnlAHHxM37Av52BucS/R75V2Hkqf8HsL3Tl2 vqqcIQ+sD/RvUEn7667v6XdF/BW2+deVb55oi82uUVn3Fvwibnar+GuorZ8e be6Tk1In/IWOleY+0eID/MU5t5r7ZLPCZ/iLPI4398kB8TH+ok5rzX1yXPoE f6Vb/6usHaWXY987oyv63VxVPLBF/OW1/aOSXvzOxkB1nV59dPLw1DOXxF/N tv8U/Zhr/abD3oWf+8J1KtE8d0kPzRozIH/QGZVh4rTo0Hs152L7j8s9V5b+ 0Xh/5gG5F1OG7fhVXOtmuUc77lrSUp6m5d6NRdUE79iTmnva++E87ZtVc7sO rSr67PZ5kQcbtK3bFfU/LKgnhg== "], {{ {RGBColor[1, 0.5, 0.5], AbsoluteThickness[1.6], Opacity[1], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNmAnY11MWx3/XVohEKCIltKdFaY82RbTRikq7KfsSyTY1KOswkUGi7Euy 79sYYzaDWQzGGGNm7EuGwRhzPs7n/7w9z3ve87v3nnvOueeee7/n/ltMO2b0 /I2qqro2/m0cfEKpqoODfhHfI4IzVj9oy6BNgjYN2qJKWdr/DKoXtFVQI8eQ 3bzKucg1VAd928iR+ySoc1CvoJFhq2vQL+N7e/VtHdTEOeh+L2i7oJ2CdnC8 obyeNnZWpnHQrsrtGNSlpE76m8mxs4u8JtdQe81tY3+fkjZbBu3hfOa10h7t 9kG727en49jfS46+Do6jo21QC3V+6HeboI6Oo6OTHB3dtYGObs5vFzQ6fOsZ 9Ov43rekji5Bo+K7e9Cv4rurutvq4076vY860NtD3djfV97JfWpkTHq7X+jv q1586SdH337qQscA/aY9JnzpE/Sb+B4a1Ecd/Z2H3GBzATtD5H2kLto7wHnY HO587BwcNDBoUNAhcvQd6Dh+9S6pn7GRjmNnjHqHSf3UO8px/B0tR26sctg/ VI6dsaG/f9Bv43uKcoxPCBqhjxPl+PhF0LigaUGT7MOvw7WNzcn20T5SX9F7 hONj3MOW7u1R6hwfNFc55s1WF7pn6BO+zJRjf7rzGJtlH3P6lfSfsTnqQO/R 6math4bM/kEvxvd694I5+5Vc3/ygY/UPOydoGzvH6xPt04LmKX+i4/h+khz7 pzt+TNAprhNfTnac9kLHsXmG/Ligc5Vj3tnaQPcix/HlTDk+fqU/C4LOso85 5+krvpyjDvQeFusdHPS7+B5Uct6SoOuDLgv6cdCP1Mf8oSX7VwYt0w/sL9Xv Rc5ZrJ4LHceXi+Ss43LH0X2JPrHWix2nfYXj+P4T+flBP1UXsiv0AzvLHb8g 6Er5UvtON8ZX2bfM8YX6fbU60HuNuvFrXKz3gKCX4nuVa8P3G+T4+GzQvUH3 Ba3WV3y50XHaN+kT9tc4Tvtm+1a4n+QauXWb68SX74KuC7oj6E6/if/d7hN+ 3a+Nm/VltXbWOo6/98jx61bXjI119jHnLnVf73rWqPcBdd8S9KD8VvkKdT1k H76Pj5gdGPRyfD+u3+h+Qo7vz+k3un8uR/fPtM3YU64B3590Hu1n9Ju1Pu04 bc4Q55dz+7z68AusrWEv9QK1AhgM5m/u+PCSMX60yjFkwWDqBmoEsOVfVdYQ DaqsFbZwfq1WwMZjG+zVHaFzfdBrVdYL4Pp26gbDt3fOjrYZA+vAvPerrCGa VnV1AGPgJBjfQptNNpgPdu9iu7ntAVXe98PVy73bUn1gNxj/UZW43rpKvWBv G3XtqVyt/mjm/HbKMQb+dtC/VtqA2ivXyvH2VV2dsWdVVzd01B6Y2UU5MLaG +fBujoOnfdTXQ7laHdCjqsN45MB/cBkc/bTKGq6n+vor190Y9XcOmDm0qsP1 werdTznqArAZzKCWoY6p1YXIDjIuNX/7qG+I9oZpo797Qnsr48s+f14lJh1U 1dUHB6t7pG3mg6U1nIePUtdYx2r4PUHbo5wP5oOR4O4Ix8HKgc4ZoY1Jzmce GDpZ3VOqxNEvq6wJpmr/COVqdQay2OAsTqvq8HuGfkzWBranKzfB8emOzXIO srNtY2POBm3w7QR9AlfBU7AdLJ9X1eHxifrBHTFfG9y5NZw/1rGZ6qvh/PHK dXEve2v/ZPUyBu6d4XwwBbz5uko8PrVKP8DPBfp3ivPnK3ua8Zur7lodsLCq w/hF+nWWbdZztm38OMc2es+1jV5ws4bh8CVVHR5fqP3zlcPeBbbRdbFy2AYz azi/VDlsXKLct0H/Dbq0qsPg5VUdfoOF1AVg6GX6cbntM/VlmT5e4Ri2wair 9Wm5urB/lTaYs8L2hcqu0KdrnA+OgSn3KgeW3aQfYN1K/Vhlm/m3KFfD+1Xa Bidr2H6jY1eqr4bta5Sj735t41cNM2t4vFZ74Bq4WJXE+9urxPnvMcQ13Ob8 lcoyRm1CTXad/q1VF36t08Zq173O/VnsulnbA/o3JHTsbB0IboOFj2gP/HxQ e2B5Dd/gj1Z1uM4YtSR15GJtg81PafsZ2/jyrG1sUweA+X8JeqXKN/UhoWNP 3/W1+uA5/Xje9lp1Pxn0RtALVcrfpz5s8PvACxnWqlv829g3+5tBv6/yvXm3 OlhDD+oC36F/DfpDlW/VvtHX0Pfg34L+VOW7aVj0Nbc+/EfQ61XWPO9Uifn0 vx30apVvjQHgv2+uvwf9ucqYD4y+HX2P1Gos1n1Q9O1uHUWtjjz3Cb8/ECvq EN7OrIU6oVd8b+n7mjcOdrmfec/+sUrs492H/+AL73HWCO6Ps07h/L5VpTzr pZZjXeRk65KxJs6bltwz4tmo5BzktyoZO3xo4z5SM21fMnasvWnJuLDeiY6D gS1Kxo647VIyRsTn3Sprrwbq5Hsz9/AD1w5/3+9XnIN8W/edWmqPkvtEPCfb R03UrmQNtJvy6NnWfvKB2ugIOXXK7JJniXP0cZVzieHeniPGPquy5iDmU0rW HtQIHUpi/P5B7UvK7G28P1Oe/fm3ezStZD0wwrkNbXc0l8Dg6XLw7ZsqsYc8 6WRegUP/qRKzpzqX78Oq3P+P9f9V5abq25b6PVMdC9SJ/h+Yv99o639VYsCl xoHvHwY1Lrn37Htnzwt33GvOQb5wQEvm2FzH71Ce/murnLebZ20T95Q9Yg83 tq6Gb+IZZw83U6aBayHO9YNv7hmv7/6y7+wt3y3MtY1K5hh99ZVH96bqZ8+3 cC4xQn9neQPP4Ouu7XZ92Mp+9nxr/WE/t/FugTfyu4l7R5yJPd/z3MMdSu5d Y3OAb3Jq25J5RV9jY/6F7XHm1OfmFfqaeOewV7uW3C/6mtrPPu+kD9uYe+hv VvJ8cjbJdXJ+sbyZ/c08C+jczX1nH9e7ZurN79zX65Rp4f5SV3M3kZPcf61K nlk47YervFfauEf076HMXt45m7mPbbxf6GOMu6vWrmfOtDVPyJm23gufe97W u1/tPQvkQzv3nRxo572A7tbqJwfau79fe2a+ct0dNtijju7dl57JL9yXTsac +O1tDNHZyxzD527mPPHrbGwrv4nr4SXvON6Kk0res12c19W5EH28O7o6Rm5P Uob7c2rJ+6u3ZwN9vP/wpaf+HFnyfuQthF3eqNzD8B6enR72tzCGPfz+1vuC PEIXOrqos6c50NO1c3a4r0b7TQ7hF++ko0vWLpw13mh9PUf4T5t79aiS92k/ c7mvecjZoG+8MWxpPHkrDfAcbec3sjNK3rm8McBu3hucTeqowZ6FWSXvTeqh GcpMrZIz50X9wUbtPA5UD4Ru3gfoQscSdaKf+xaOPc7aAPWMM2eG6MOcklhF jcg39SL3LZza5SXPF3UG9d488q7k7yMH2v+yseVepi5s7lzO7EHKMRdinJqw rzEntpwx9NU3H0aZG9R4/BZTT7t8x9/3evF3ZZU4PtKc5Lweojy5OdL8PNh+ zh31wCjzbZjrRR/vYd6HR5gbY8yHRcEvK3VYdpjxrOF9a/OR7zb2HWk/53mm e4GdccZ2f/eb/QPjxhln9uuwDeTnuC9g/VhzjD0caz6AxYeaJ+g81Pwh3uPN c/BlvHuEL7M2yI1Z5h46jzLnOcdTXXsfvzk/3HHTtIsc39Qb3HdTlB9kPi/w zNHfyzzlLEzznBKffc27OcZkqG3qJc75bPunGyvWVatj+KZmn+Cect9wj1Gn wQ83f/hd7U5j/GnwW0vGbLi5eod5Rz5vZNyONocvCnqrJF6SP/PM+UuD3i6J r58R45J5cQ66S9YEnwfdXTL25wV/o2QdsBhfStYcS4PeLInxlwe9U8RRbZHn H5DjJXP8k+A3mwvkNvcv9/JEv8nz91x/U3N+gnq6GxPiBK5NVL42n7qaeoc3 D+cCbJhr/nwcfE3J2vOj4DeWvF+nmTPkw4fBV5U8WyuCv1vyfpxrPNGzHNsl awh0cb64e+8yXsTqNmNKPFeXtI3s9SVtoP+WknvJPt5Q0if8OSn4mSVx8OTg Z5W8n68rGUdi+GzwZ0rW9zeVjCnxXBv8uZLvlvnBTy1ZGxwb/LSSOH5K8LNL 1hUnlrwXuBOOD76wJF4fF/z0kph+QvAzSmL3/cHvM77HBF9QspZ4OPhDJd9F 6L5a/dhcol3WcaVrYX1XuMZ7g68r+b5C37nqxPdr9B9fztefe0qukzXi18X6 hu/L9P/x4I+VfHc9GvyRku+xp4M/VfLd9WDwB0q+354M/kTJN9j/AVvHass= "]], PolygonBox[CompressedData[" 1:eJwtk9dOVlEQhc8QIEDAAEGjRI0YjVz6DFx75YUP4LUB+wMoNmxgwY6KHRSM vStgxYZKExRFiiJGo4FoNBq/lZmLL7P2+c/5996z1hQtLJtfmpIkyTxIhQpL kivwHp1DPQCjMAfSebaW+gYyYAbrVuojvYP+AqvRPZAK+ayfUB/DV/Q3WIe+ BO/QmdT7cA9aWb+Fzehr0I/Oo26APsiGuTzbpLNBLpSwbqM+hzH0OLSgG3VG 9DDUoM+Z/3cx9TwchHbWfbAP/RlmaV/W5dQL5r+lUbfCByiABTx7SX0BP9G/ 4Bn6KXxH/4Dt6FswgJ5C3QaDMBkW8ayd+gp+o//AQ/QD+IQegUr0De2Jnkit M99Te72Gm+hT5lp77Na38gJqEvdGPc4Mj3qhLLxIVx9gcXiXFd6sN9fyqJPa AX/R/+AsuhsserqTOgxToZz1afM76S490GD+H/q2N3HvlKmc8FDZUI/TIiPy Up7nhae15plSljrgpLnH8rYbjpv3XL3ugqPmGVO2OmEPuhmG0EXqE5RGdlOU O1gSWZoQ3m001/JQWV5j3itlWtnaov5FxvZT75pna7ZyCksji3pHs6LMKWua mSY4Y94Lnek6+oT5XeTxVfQx87v0wyHzTCgLyuhtdL15bwfhMvqI+V01o8rO KvO7KUPyqguS8OwiHDbvpWbuI3pFeDc9vN5lruW5vK2GaeHxCKyMbM00nxX1 QHfXzGgWqmCS+Uxo773m7+oMyr5mQrOgGRiAZeazpG+GYLn5bBSaz8YOc60Z UbblqbxUxjWLmhHNRkGc9Y55b3Tm/5t4uXM= "]]}]}, {}, {}, {}, {}}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwt0skz1wEYBvAf6dTJza1pOji6du3sZsbduNakSLKUpLQgSiplaVERKrRQ 9j1kaxepUJaQ6g/o851x+Mz7XN7LM8+uxKS4A2GhUKiR/UKQh+kXBmikiUpW qeAowdMnTjLIEDf5RRXNPOEU0+SSThKfOc0rhrnNGrd4yjPOMEMeGRxklrOM MEo169zhOS2c5wvnyOQQc+TzmjHuscFdWnlBIV8pIItkvnGBcSao4Tf3eUkb xXyniGOkMM9FJpniAZvU0k4HJSxwieMcZpHLvOEt9fyhjk66uMIPSskmlZ9c 5R3vechfGuimhzKWuMYJjrDMdT7wkcf84xG99FHOCjfIIS3oyz52Bx24bbTT QSdddNNDL33BlhhgkCFaqaOCYnJJYx8JxBPLXvYQQzQ7iSKSHWwngm2Eb+33 Pz+Kc4E= "]]}}]}, AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.427513472577849*^9, 3.4275134910915527`*^9}, 3.5223777214863787`*^9, 3.65310850969811*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[15]="] }, Open ]], Cell["\:9752\:30a8\:30ea\:30a2\:306e\:65b9\:306f", "Text", CellChangeTimes->{{3.427513540848339*^9, 3.4275135450708647`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "1.25`"}], "}"}]}], "}"}], ",", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01`", "]"}], ",", RowBox[{"RGBColor", "[", RowBox[{"0", ",", "0.8", ",", "1"}], "]"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "1"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "False"}], ",", RowBox[{"Axes", "->", "True"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(x\), \(1\)]\)\>\"", ",", "\"\<\!\(\*SubscriptBox[\(x\), \(2\)]\)\>\""}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}]], "Input", CellChangeTimes->{{3.427513562613393*^9, 3.42751356538879*^9}, { 3.427513603129726*^9, 3.427513603673471*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[16]:="], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0, 0.8, 1], PointSize[0.012833333333333334`], Thickness[0.01], LineBox[{{0., 0.}, {0.8, 1.}}]}}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.427513566702083*^9, 3.4275136046821203`*^9, 3.522377728002112*^9, 3.6531085153700743`*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[16]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"%9", ",", "%16"}], "]"}]], "Input", CellChangeTimes->{{3.3964227329327602`*^9, 3.3964227358269215`*^9}, { 3.427513574507732*^9, 3.4275136101983852`*^9}, {3.522377744273291*^9, 3.5223777474937067`*^9}, {3.6531085202284327`*^9, 3.653108550457416*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[18]:="], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJx1WHtclFUaxsuWqdOasVqTl3JNZ70UXsbSVd+MYot1FcnMSEfLyhK8LIpK uV5AxzI1dcfFTE1csc0CvCCmjR4wRcHLjggMzIIM8A0MDEhO4aUyWs/Xc+b3 e/nBP+f3fPN9533f5zzv5fDYG/Mj32obFBTkaxMUdHetOrHsbHNzIw3+/ai+ ltBasfrt/zWlJddT/tFtkQaPR+B34D/p79GSmTdX2q2V6n1gvA98Sf+Onu76 lcUZcVV9D4zvgfE9cIi+UsKsd78x25xiob6vwtgfGPsDY39g7A/8nr7ShYx+ D9mcDmUPGPaAYQ8Y9oBhDxj2gE/rKw3sfK5WM59W9oFhHxj2gWEfGPaBYR8Y 9oF76CvdOt5xg9W/X/kDDH+A4Q8w/AGGP8DwBxj+AMMfYKx2fSW+wl9g+AsM f4HhLzD8BYa/wPAXGP4Cw1/g1njkfgLzFf4Dw39g+A8M/4HhPzD8B4b/wPAf uDUdch1wnrnfwHxFPMCIBxjxACMeYMQDjHiAEQ9wa3nM84rrmuuGnwOPA5iv iA8Y8QEjPmDEB4z4gBEfMOoo7LRWF3nd4nWE5zHPE647fm48TmC+In5gxA+M +IERPzDiB0bfwb7gAxh88L7A6zavo7yO8TrB847rlp8zjxuYr+ADGHwAgw9g 8AGMPo19wA9wa32X90nex3hf4XWd101eh3gec91zHXAegPkKfoDBDzD4Af5A /131IfAF3Nocw+cSPkfwPs/7Lu97vK/wOs3rHK8LPE+4TjgvwHwFX8Dgi2HV p8EfcGtzIZ/7+BzH5y4+F/E5hc8JvA/zvsb7Aq+jvK7wvOI64jwB8xX8Mazm GvDH52o+R/M5mc+9fE7lcySf6/hcxecWPgfwPsr7Dq/DvA7xvGtFVy144+tw uf81Wint1ogi6W8d9ZV+amKZ/pzypJ9uVYeAH9XfozL5nUsU6iv1l88LVF3H 773151QpcZ7I11eqletxNccBn9dXCpJ/aXb+HPzid74v/IBdnCcw9xtx5+jx KT3gd/CEuF06X4on6A94hM6v4hV6BcZ70CH2hV3EAZ0hbugM8UFHiAc6gn84 N/gDnUQeu9yYG+2lCZkzjkRYqsTN10N6xRs8VC39LBeD5fuXyCr3OyuypZ0s GirtZoj3pN/56r0QuW+JuCDtFVL7t/ZM9Rvr1L4z7KEDQuMbBOymGNqsTbZX 0+6OH483pVeIcN0PWid5LBVLdLvk0O2KYN0udfvmblzbRYFuR8TqfqjvTLof dLDLwmxjnk/ATud3gv8ZbWoUQbpf6jwYVuf82/s0RfdX6QK8A0NX0CHXLXSK vMF3wMjzqzrviscdOi8KI+5dcr/txFfwmKDzoM4RGPHj/KEHnAfqAfIA9QM4 VeeTftLPU/kNPmAH54K8QV5Cl8DQyRhdP+o+Cv6gM5w78p/nBTB0Ct0gr8A3 dA6eERfyDv0B+AtdN0qX4AfvTdP1rN5DXuNcgeEH+EAfgU6RR6hLiBMYcfI6 ibxAXoJXXmdRHxAv6jLOETqD7lGXgFE/EC++g/84P/gD/vEe+IN+cA44f5wb VtQT8Ir6gXPh/QUYcUB/0BHvF8DIG+gL9ZPXf2DkE/QDPeC8kS/AiBd5ifPH OSIfgMEHeGxNB8DgC/WP923oFBh8oh6CT9QvnBPnD7yBJ84X6gDqL+cH+od+ OB+IC3ri8UO/eM7jhT6hN8TX8LtTx422wBxoXNvlVtrrvhb3tpCS2iGWxArR obn6fPOKshb32L49V/aw/LtMpOy9IszBhSp/kYcPNG5OjTZliR77P9mcbD/Q 4v9pb3T98n27NUUUffi9WzPnqu9gZ9K34zIjruZTx7pXw02NLf/fsHHq1jtp 44ppdNKsCMPjNcovzBvBtC852ltN1zN9m6MdjdS72/lX/bG1IqHn/R9Zu9ZT QdDbJ8yLqsX49uu+T7teRm///aN+lu+dIv7yJY8WV0QXw7IbtKbLovuAR6pz fali519/HBZ6+3N6IuSOzRqbI4zeLWNDb2fTu7M/yIzIrFT7YN/Y7gO62W5W UIR83kBvyv1rVD7EzBsTb6+uFhnT//B+8rIGVVe6fJaTaR5eR/X9O2eZf9AC 97w5N7ZZh2pi5YFOcfawWnXOE9q1ne/sEpg/jdqJRq3QTdaHR442NbrE/XI/ F12T+xWIXlNuveN3uVvMRW37LHjL78oXzkllZ4zhJap+bCqgMaHH8qmN5OGi 0t1q8+kXDZ48sfBm7rGIqw5VV3uNmvuawZOl8tdVfHcdIFw75Er3yn1OiFTJ 51FyfXn3+Sg1F0D3B4eYJ5qezKLYJ90FxrwslXfw47D8/mzg/0vPTHI0N+dR z9jExU6HQ/W/VRf+lZA8ukTVh8VrPn4mtMQtBk0rLdOaXNTBWDfZsFUTlfva p0YvdVPsgy+fNRe4VR4iL4q/iIwyrKmgvVmWi8aOHlX/wlakbrZGekXUd4kP 2pZUqbxamvrJqNCRGhXNfedKM9Wq/tnhkdgSLa5B1R/0wxdOJByM2OgR3pJ7 /LkDA/Mv3vvlsbvnUykyB93xaU2B/zNh30zxY6FxQMDvpskTesZvKFRxfy1/ d4gE28rZzojcFnNCuMzHM2KROLzL6j9AfO6IlL8fUfVnc9L1k2bbEXXuz97o Pc+56QxN7L1hmf2eQqUT6ChDnqeDDsXv/sAaW6Z0Bx0+J78vVLq2bJr1S+5A t8qLn6MMfeLLKmnec3On+KN8qk5hng+T33uo2HxfYfNLXjo30uQwLq4Sy8de /iltXC0t/fOMbPNwTUQl9KrVtmq0aazjIdsStwiX+XmR5sj8PCti5Pk7aNjS 2b5cX57YFnNyrdV/gnrc98oWq/+oiJH5nq++6yvzySFW3Ul9IvR2Hs25NH2j dahLbLm1yKs1FdBy75yF9qF1YvnV2e3SmzQqLt8z3vB8rbhQGtLV9pRGP3/6 8gzndw0is0QcN/9QQ/3e3T7JEPf/PpTetMp+o0JUt3MG245WUuT5+hGmxjKx WNanHLos61O2qLne/nxzcypdTOwy0eD5XBTJ+lMkFsj6c1l9N3O/qUprclLI kZIbaQ/UC9hZYNw5zPTfRrHj0MNfmxcF/v9y6L6IM8btgXtzhuNQB1tSrVj/ bep0p/saFU1/+nHLYa+6D+wN7puYXB+4Dzwh+XOp+R95ruYCyZeL6mV9Lqc+ sj6XiFg9P1X9Mst83ylWyHxPItQRrMaNr8z251SITTPCs4yxpdRLr38qv9Fv q9cOKmwmr2ibm2Q3rrum7i/oK1uqo1Ynjy4WyYW+Cf7tgfsG8mDsnuXPm9JT aMFnnTulJ+9W9w11T/34+Nbo/5TRyeXODukVgfvGiNfic5vLrwlTTswxc4aX dl9fPM25KXDfwP1jz9+yydToVfcPvb95abL1B6MlMXAfecFS96jljz6aGXzs pDnDI+q+WFyjrfFQ2qkXEu0jKn7rb6UEHXz13OH90ecqKMa/ZaRpfqlo/9La B2xJBVQ9d/Z3WpxDrJf1/ZSqyyNkf8sUXWV/O0irf948yW/cRSHxieeMeUmi ++D1Y0xP5omaT8JGht4+TeGy/hWLqbL+XaFLUTl1WkqVKF2UPs25oJzOvTi8 U/zFchGWmODW4kro/qwP+1tm1Shdxyy6M9MZ1CC2vfyXCIO5hk6WDmlKa9NA YQ1d7ebhNeLaxG7HzZOLKaP3Iz4t7op4fti8eu3IKZWX28Y9+5JhjUcEDfxH d9tTFbRuWvGa5DdrVF9+9Nsfl9v3VdHIvWHDTfPLRUfZD/PIL/vhaZETu3tE aHwmrUpp3GH1HxQdZT8oEG7ZDxx0dXzKG84upWouuJD96SljH58oPXBvz/gj HvoVrZbrWA== "], {{ {RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[0.5], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNmHfgldUNhr8jAgo4AQEVBREEZctQ2cpQpiIibsGFVhHFhXXgwIF7IiCI iBMctdaq2DrqttRtHUjVOtBO29ra1tE85Ln98UfuWTk5b3Jykny37ZQTx09b r6qq8+OnXrT/DfpP0ItBmwZtGNQIKrneIKhJ9BsHvRT9TYI2kO/loPUdbxzr GwX9JvoDSu5DzqDoDwzaJmhljBsGbRTUJ8a9g76N/lZBmwc1DWru+sZBvUr2 mwW18GwwbuE6482CZ9OgVxmXlLNl0NbKY2/fmN+JNui5oJ8EPaiMhuLfxrOR /VpQy6C2QYNLymsXtHv0hwRtF/RGjNtUKXd7z0SPzs6zt4M4Wge1d702buZ5 XYO2U35T8Ae9Gf1txYLe3T0DGd3kZdzFc9jfw3XO3DVk7BL0ffR3DtohqGNQ T9cZ7yJ28O6mLLAcGDQqaHTQUO5Ju/X3bLD0k5fxHkG95RvgOliGuY9zBnk2 WAa6zniLwNg86O3oD5d316DfYvegsUF7io8zR7jOeKSYOHMv1/uLfYDnjLbl /GFxztCgDiVldFbnZiXx744uJdu9g/apzQXtJz7On6BujN8NGhN0SNBE18G7 vy249tWO7DlA3GCc5DrjQ5WDvocHjRPDMcpF3uR1cE2xHS/t4RncK76FLx+m PGQdKQ6wH+EexkerG2cc5TrjjsrAB6d6PniPtUWP84KmBZ3IfZS0AeP+0e8X VAWdItYj5DtEXU91DlwniRW9p7vO+GTn0Pt08YG3Vcg9Ptpzgm4KujBodtBM 7QXeM+RlfJrnsP9M19Hj3CrlnBC0FW88aFX0f+z6cUEzPB8dZsmLjuerz3TP PlneC9WH8WXiANdFrmOPi22xwQXKYM+lYkXXS1xnfLkywP5B0FlBVwXdKA5k 7BnYRwTtGDS8pG2uCZrrOrjmiRUsVygPXa/TFuh3rXZlfIN3zBnXu874+Spj 50+D5isPnR4NWhp0u3S1GJaKl/HN6oauC9zH+LagK+W7w31gWRQ0R1sudB/j W5zDNsvVE1+4Tz3ne3/4KfHsLvVEjzuVzfge9cSWd7vO+F7lIatl2LNF0HvR XyYv5y32fGz5O/EvCbrf8xdop4Xq8ZC4F2u7RY5XqDO4Hg66VTmPOwf2R7QR tvy564x/KW70eDbogSpz2zPiYPykuJe7drOYHhAj48e8M3A8oTz2POU+7PEL sXDer7Q1Zzzt+n3eDf6L37+gnug9S9tic+oA8i11w6+rrCHW1gTWAuRv6gVq CGqMV6qsG5pUWS9QE5DXkUH+r+VwWmoF9mzqGmNybC3XEtNau0ZeJb8ii5xc q0Fot3RPa9fIc+SWfp6zRVVXK2yr3NerrBvaVFmPUIu0qrJWIEe3VC55u52y ide1GoG2vWuc11W5HeV7q8qaY0cxtlcWssljtbqDlrxOnULtsp183deRix7k 0M2tEXp7Bvm5p7J7uIc6gvqpj3LJ0X3F21O+Lsqr5dVd5SOOE9umK2uAdmQf OXmgZ5O/yLXUAuTjIWIkP5JHOXuofJw9zDGyRsrHmeTfWh0xXL7dlDHC80e5 h/3kQHLhO1XWHGPEQW4l11IvUBOM8+zxrvUQ+7p1xijPm6Bczt/PMWdPdFyr DyaKe5Jj9hOrDvAc8uMUMZETyZ1jtSljMB3u+P0qa5GDq7r6oFYvTJZvpLIn ie9IzwATubKW/49yDXzHuAa+qY7xp67eea0mYK2FOf94zznONXCTK8mb1AXU Cieow3TXwEfOxFduifUvgz6rMieT788WKzmxVlPQzvAM8tiZ4j5NPnCQx85R B2JSrY44XT70mekamGa5p5anLxIfObBW75wnH1jJq7UcfoF86DHbtRnKmC2m S5RL3lhcZfyfKvaZYrpUPjDOcby6ytx/pbxXKAMs5CtiK7mf/El9MMI64Grl wnuZuhGDa3me9hpx36gscJP75roHjIvUYZ5r6DTf8RnygXWyOp+sPeYqF33I M7Wcv8D9c5Rdy+0L5eNbk+/P+tH/sMr8Sl4kx5B7nhYHeWe5OpC7anUH7VLP Z32Zut4p3zxl3avtyGm1GuEu+bDFPa6B9X73kHvJwQ+LlZxay6UPyIdO5L5a /n9QPmz5kGu3KuNnVebyR5R7peMl2m6ZONDnUfnQ7zHH4KMOqOVn2sfF8Yz2 Yv8T8iHvScd3yrtCW2DXWs5/Sj50elZZ6EH9xzf034I+rjI3o88Lrm1d8r+E etp6hVivUofbtMVzyv0q6KMq64DusXdb/2f4ssr6oKHEOjl/L/9HILe38f8G 8na9krUCdUKbKnMxufHvQb933DN4dvB7849V5mx4/xH0SZX59eugT6vMB9v7 LU6OGuU3Pzmwfsl8TC4eIy+x+V9Bn1f5Vv9ZZQwjLjcsGaOJzx2tJYlPO/O/ hN8dr4sVnH+uMieN0R8+0H4bBu9fo13DWknZxFfmVsuLX/Felng3H69jP+y8 vutr5H9N+7RU/0+0yb+Dvqny/b2rLjVdsc9g19coD9lfKP8V/WOlvH+S/xPt 3kZcX4rtM3Ueo/3+UmUcA9cfxIYvfKUea9QZ/Lx3Yh0x4C3vEj3e9w7eVYdv xLnae8Km/Af1XZU+g8/yP1g9W/4XI6X9UGWN1KlKP6NGpWb8zn7joPWUQ7+3 /H3kwS+Rz38yyMJnGkS/BB2kH1TmxP7OH+z9f62913dvJ/Hgf8iBt6H86LdB Sdt0LvkOiaHjbBs4T2zl/78eJetUalTeEPV3TT/6jW03ts++Ju7dx/qWerZL yXfIuLvy6zuP/M2qfEPUmthm7Zzz3zvfybap/Q/0A3yga8l3SF3I+21ufbiv c7W6kf+Sesnf3D7vrEWps3ELbU7b0j5vcEtrjP2sN8iNxCG+VfDnbvL8qMp2 K/vNxIZejbQ5/tPaPraibW1MXPs/Y8lvFP5LbKf9N9GG2L+tfezzkjjAwFxb 4x37+K7gXQwyZmLzV12r/XcJD/Vae3FiE9r2xrXG3hnnEL/4b4y6klhDPcHb GmbMxOadSsYvdG9lH9sST+EZXGU8Yy93x3on4x3rHeRZJd9Z2qeztuJ/jJ28 i8bON9IeXbTJtmKury910fe4866l7k66qi/31a3U4e0mft5OpQ8gh/eA/bAX 3018h/G9SYxoIv6e2qG5ffQeWZKviWfhT6t8++z9Vh7yVi/121kdiSPM8a05 umSO4VuLWECdPM03wjdYH2MK632dI6bs6N5d7P9grGHf2JJ5Yjd17afsbtqi lfjA31R+eIgntP3t47MD9VuIb/NG+tcQfWxvebgX2kH2mScGsWd8ydgxWJ+F Zxvnh/gW8N/d9e+JJd8k8X1CyTf//++xkt83RZzo1857RM4Q5dBn71DvroP9 cd7psFI3N0yeHsp61XdAPc1boN3Tu/si2kUl81szsbH382hvKuauaJeWjGV8 0ywumeuGqPNg7TFenH31AWoM2tHeaS/9h5qHdmSp+z9kpH71hnvgfz7aFSVz 2E5iRo81QfNL5uGh2hQ7voKuJfPHwUHHlnxrr0f7Wsm6Y/+go0vmxGfi5+KS eQzbETt4159G/9qStcAI72+4tpmgfT6L9vqS+b+V94s9h9s/xzg80fk93E+c X6n+TfR/7IPN1v4PX9JXz4/23JLx7fZo7yhZl7wX7WEla4QPoz2qWDNFe3nJ Nzsj2pNKxsPp0U4rGbffjPaAkjXI29EeVLLGmRntaSVj8lnRnqnP3BXt3SVr l3eiPaRkfTcp2mNKxroXo32yZO1wX9D9JeueZdEuL1kz8W54P/WrOl8h525i v5VvDR7eF+8cO1AT1nI/e/GFx/WHAc438I2Pdd/soAtKxrTV0R5RsoZaFe3k kvXIZdFeUjKecz8jvKMxysH+6HSqeh0YNLVk/fA0d1uylsG/ztDHsMeJ2uQ4 bF+yBmDfC+7F7x7T9zj/VjFcVBIf2C4tiRvM3OcS7/Tlkmdz7pFBJ5SM/4fT lswRK0v6dAPv/Dnv/XjuvGSOYN8c9+IjV+sns0r6Fn6F/W7WhvjFDfrGlJKy kMOZ53ku/nKjPoPPLtBvzy7pN/jMoSXtgk1uKxlTiCfzSr5n3vI1Jd/eR9Gf WzIGEX9OL+mv+OopJf0YH76u5DvkDV5V8j3wFhaWjGvEtP8B2J0fPw== "]], PolygonBox[CompressedData[" 1:eJwtlMdr1VEQhe8ksWEIiBAC4iILF+79A1y7dGOJNepKMGJBxYKKhSj23nvv XcEoIrYYTSyxxYIae++KiH7Hc+F9zLnvd9/v3pk588orq7oPK0gpdYMiOBEp HYef6F+wHz0PHqI/wkl0D+CTfsNAxBH4hr4DFeiD8BldD3PQc+E+egIcQC+A x+hPyXsXwZPk3/QK79GzOpiCfgqdoAvrWcRm6AxDWfclHoIv6OvQH30YvqIb 4Sx6cli3IO6GadCV9TvYiH4EHfIdq3Q36AiqSyOxN7RFlxCXwm1oBw18t5M4 MXz2WxirXKBce1hvJu6FD+gXcC1cU9WyDXFfuEaqjfasR++B9+jnMF7P8lll cCqck3L5y3otcVc4l2dwGn0OWqlHcAbGhHtRSBwBI6E293sD+gGUwT3W24ij wrV/DavRTVAKt1ifJ14I9/4SDEIfhe/opuS7zwh7QTksRG+BV8k935rvoLP/ f4ceHn6Xar44fAedLU+ot8vkgeQeD0Efgx/JnpwUrolqUZRzqYSK5Jxmhmui WrSEu9BP/uF5+9yrcXA1uWe1cDn8Lu0ZTayBP+gC7VOvw717mVybAdmbpdlL g7M35akd4R6qd29gOXp7WCuni8o9/G55TN6enXshj68Me0zeaoYb6J7Zm8XE JWGPluQcNLv10Do8w/JCdbg38sSqXAPlfjN5Fqbn3mom1Mt1Ye+pp5qlFeGz NVOq/aawl9UDzebU/C7NqP4L1oS9qP+EmuzBwlzDhlxD1U53nB/OqTh7so54 JfdKPdSs9QnPkmbuHxe4tQ4= "]]}]}, {}, {}, {}, {}}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwt0klXDQAYx+HrOMfCqp1lx87eB/AFrGwoUypDAyVEMhQyJcqUDCmkSIiG W917G28lU0jGSBoMn0Arzz3nLp73vIv/8rc0NWfVjgWBQKCbeWJ/p7OF1YTo YohBYuNcfpDDVtbwjnJ2sos87lLHeWaooJkkxthNPReZ5QJPWMs4e+klzB56 eMYw20jmPZfIp4Ap9pHBOj5wmf0coJB7NHCFOSp5yno+cpD7XOUXVbSwkc8U 0U+EQ/TxnBEy2cAnrnGYI/ykmCxS+MJ1jlLCMR7QSDW/uUErm/jKcZqo4Q83 aSONb5wiSjcnGOAlL8gmlQlqOUkp05xmO+l85xZnOEsZj3jIHf5ym3Y2M8k5 HvOGt7xilNcE6eCfriappZU22gnSEWuOLkKEicSb7KGXPvoZIMogQwzTQg1l FJJJMitZwXKWkcgSEljMIhbGu/8Pk2t4bQ== "]]}}], {{}, {{}, {}, {RGBColor[0, 0.8, 1], PointSize[0.012833333333333334`], Thickness[0.01], LineBox[{{0., 0.}, {0.8, 1.}}]}}, {}}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{Automatic, Automatic}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{ "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True, "AxesInFront" -> True}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.427513591673101*^9, 3.427513610977808*^9}, 3.5223777488015947`*^9, {3.653108534350854*^9, 3.653108551124551*^9}}, Background->GrayLevel[0.900008], CellLabel->"Out[18]="] }, Open ]], Cell[TextData[{ "\n", Cell[BoxData[ FormBox[ RowBox[{"\:70b9", "(", RowBox[{ SubscriptBox["\:ff58", "1"], SubscriptBox[ RowBox[{"\:ff0c", "\:ff58"}], "2"]}]}], TraditionalForm]]], ")\:304c\:6b21\:306e\:4e0d\:7b49\:5f0f\:3092\:6e80\:305f\:3059\:305f\:3081\ \:306b\:306f\n", Cell[BoxData[ FormBox[ RowBox[{ FormBox[ RowBox[{"\:3000", " ", RowBox[{"200", "*", SubscriptBox["\:ff58", "1"]}]}], TraditionalForm], "\:ff0b100", "*", SubscriptBox["\:ff58", "2"]}], TraditionalForm]]], " \[GreaterFullEqual] 0, \n\:50be\:304d\:304c1/2\:306e\:8d64\:3044\:76f4\ \:7dda\:3068\:539f\:70b9\:3067\:5782\:76f4\:306b\:4ea4\:308f\:308b\:76f4\:7dda\ \:3067\:5e73\:9762\:3092\:4e8c\:5206\:5272\:3057\:305f\:5834\:5408\:ff0c\:8d64\ \:3044\:76f4\:7dda\:306e\:3042\:308b\:ff0c\:5e73\:9762\:306e", StyleBox["\:4e0a", FontColor->RGBColor[1, 0, 0]], "\:306e\:5074\:306b\:306a\:3051\:308c\:3070\:306a\:3089\:306a\:3044\:3002\n\n\ \:540c\:3058\:304f\:ff0c", Cell[BoxData[ FormBox[ RowBox[{"\:70b9", "(", RowBox[{ SubscriptBox["\:ff58", "1"], SubscriptBox[ RowBox[{"\:ff0c", "\:ff58"}], "2"]}]}], TraditionalForm]]], ")\:304c\:6b21\:306e\:4e0d\:7b49\:5f0f\:3092\:6e80\:305f\:3059\:305f\:3081\ \:306b\:306f\n", Cell[BoxData[ FormBox[ RowBox[{ FormBox[ RowBox[{"\:3000", " ", RowBox[{"80", "*", SubscriptBox["\:ff58", "1"]}]}], TraditionalForm], "\:ff0b100", "*", SubscriptBox["\:ff58", "2"]}], TraditionalForm]]], " \[GreaterFullEqual] 0,\:3000\n\:50be\:304d\:304c1.25\:306e\:9752\:3044\ \:76f4\:7dda\:3068\:539f\:70b9\:3067\:5782\:76f4\:306b\:4ea4\:308f\:308b\:7dda\ \:3067\:5e73\:9762\:3092\:4e8c\:5206\:5272\:3057\:305f\:5834\:5408\:ff0c\:9752\ \:3044\:76f4\:7dda\:306e\:3042\:308b\:ff0c\:5e73\:9762\:306e", StyleBox["\:4e0a", FontColor->RGBColor[1, 0, 0]], "\:306e\:5074\:306b\:306a\:3051\:308c\:3070\:306a\:3089\:306a\:3044\:3002\n\n\ \:3059\:308b\:3068\:ff0c", Cell[BoxData[ FormBox[ RowBox[{"\:70b9", "(", RowBox[{ SubscriptBox["\:ff58", "1"], SubscriptBox[ RowBox[{"\:ff0c", "\:ff58"}], "2"]}]}], TraditionalForm]]], ")\:304c\:6b21\:306e\:4e0d\:7b49\:5f0f\:3092\:6e80\:305f\:3059\:305f\:3081\ \:306b\:306f\n ( -", Cell[BoxData[ FormBox[ SubscriptBox["S", "0"], TraditionalForm]]], ")*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "1"], TraditionalForm]]], "\:ff0b( -", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["B", "0"], ")"}], TraditionalForm]]], "*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "2"], TraditionalForm]]], " \[GreaterFullEqual] 0\:ff0c\n\:3042\:308b\:50be\:304d\:306e\:76f4\:7dda A \ \:3068\:539f\:70b9\:3067\:5782\:76f4\:306b\:4ea4\:308f\:308b\:7dda\:3067\:5e73\ \:9762\:3092\:4e8c\:5206\:5272\:3057\:305f\:5834\:5408\:ff0c\:76f4\:7dda A \ \:306e\:3042\:308b\:ff0c\:5e73\:9762\:306e", StyleBox["\:4e0b", FontColor->RGBColor[1, 0, 0]], "\:306e\:5074\:306b\:306a\:3051\:308c\:3070\:306a\:3089\:306a\:3044\:3002\n" }], "Text", Background->RGBColor[0.753918, 1, 0.366033]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"100.", "/", "200"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[19]:="], Cell[BoxData["0.5`"], "Output", CellChangeTimes->{3.522377764115637*^9, 3.6531085828578987`*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[19]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"100.", "/", "80"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[20]:="], Cell[BoxData["1.25`"], "Output", CellChangeTimes->{3.522377766180202*^9, 3.65310858658877*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[20]="] }, Open ]], Cell["\<\ \:8d64\:3044\:76f4\:7dda\:304a\:3088\:3073\:9752\:3044\:76f4\:7dda\:306e\:50be\ \:304d\:306f\:ff0c\:4e0a\:306e\:3088\:3046\:306b\:3057\:3066\:8a08\:7b97\:3057\ \:3066\:3044\:308b\:304b\:3089\:ff0c\:76f4\:7dda A \:306e\:50be\:304d\:306f\ \>", "Text"], Cell[BoxData[ FormBox[ StyleBox[ RowBox[{ RowBox[{"(", " ", SubscriptBox["\:ff70B", "0"], ")"}], "/", RowBox[{"(", " ", SubscriptBox["\:ff70S", "0"], ")"}]}], FontWeight->"Bold"], TraditionalForm]], "Text"], Cell[TextData[{ "\:3067\:3042\:308b\:3002\n\n", Cell[BoxData[ FormBox[ SubscriptBox["B", "0"], TraditionalForm]]], "\:ff1e0\:3067\:3042\:308b\:3068\:3059\:308b\:3068\:ff0c( -", Cell[BoxData[ FormBox[ SubscriptBox["S", "0"], TraditionalForm]]], " / ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["B", "0"], ")"}], TraditionalForm]]], "*", Cell[BoxData[ FormBox[ RowBox[{" ", SubscriptBox["x", "1"]}], TraditionalForm]]], " \[GreaterFullEqual] x", Cell[BoxData[ FormBox[ SubscriptBox["", "2"], TraditionalForm]]], " ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[ RowBox[{ RowBox[{ "\:3092\:307f\:305f\:3059\:70b9\:306f", "\:ff0c", "\:5e73\:9762\:3092\:4e8c\:5206\:5272\:3059\:308b\:76f4\:7dda"}], " ", RowBox[{"(", " ", RowBox[{ RowBox[{"x", FormBox[ SubscriptBox["", "2"], TraditionalForm]}], "=", RowBox[{"-", SubscriptBox["S", "0"]}]}]}]}], TraditionalForm], "/", SubscriptBox["B", "0"]}], TraditionalForm]]], " ", Cell[BoxData[ FormBox[ SubscriptBox["x", "1"], TraditionalForm]]], " )\:306e\:4e0b\:5074\:306b\:306a\:308b\:3002" }], "Text", CellChangeTimes->{{3.3964227579086733`*^9, 3.3964227875012255`*^9}}], Cell["\<\ \:4f8b\:3048\:3070\:ff0c\:3053\:306e\:50be\:304d\:3092\:ff11\:3068\:3057\:3066\ \:76f4\:7ddaA\:3092\:66f8\:3044\:3066\:307f\:308b\:3068\:ff0c\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", "1"}]}], "}"}]}], "}"}], ",", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01`", "]"}], ",", RowBox[{"RGBColor", "[", RowBox[{"0", ",", "1", ",", "0"}], "]"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "1"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "False"}], ",", RowBox[{"Axes", "->", "True"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(x\), \(1\)]\)\>\"", ",", "\"\<\!\(\*SubscriptBox[\(x\), \(2\)]\)\>\""}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}]], "Input", CellChangeTimes->{{3.427513657109313*^9, 3.4275136591785727`*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[21]:="], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], Thickness[0.01], LineBox[{{0., 0.}, {-1., -1.}}]}}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.427513661010652*^9, 3.522377771026012*^9, 3.653108605673867*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[21]="] }, Open ]], Cell[TextData[{ "\n\:3053\:306e\:76f4\:7ddaA\:3068\:ff0c\:539f\:70b9\:3067\:5782\:76f4\:306b\ \:4ea4\:308f\:308b", Cell[BoxData[ FormBox[ RowBox[{ FormBox[ RowBox[{"\:76f4\:7dda", " ", RowBox[{"(", " ", RowBox[{ RowBox[{"x", FormBox[ SubscriptBox["", "2"], TraditionalForm]}], "=", RowBox[{"-", SubscriptBox["S", "0"]}]}]}]}], TraditionalForm], "/", SubscriptBox["B", "0"]}], TraditionalForm]]], " ", Cell[BoxData[ FormBox[ SubscriptBox["x", "1"], TraditionalForm]]], " )\:3092\:6ce2\:7dda\:3067\:66f8\:3044\:3066\:307f\:308b\:3002" }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "1"}]}], "}"}]}], "}"}], ",", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01`", "]"}], ",", RowBox[{"RGBColor", "[", RowBox[{"0", ",", "1", ",", "0"}], "]"}], ",", RowBox[{"Dashing", "[", RowBox[{"{", "0.03`", "}"}], "]"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "1"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "False"}], ",", RowBox[{"Axes", "->", "True"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(x\), \(1\)]\)\>\"", ",", "\"\<\!\(\*SubscriptBox[\(x\), \(2\)]\)\>\""}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}]], "Input", CellChangeTimes->{{3.427513669235197*^9, 3.427513672877627*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[22]:="], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], Thickness[0.01], Dashing[{0.03}], LineBox[{{-1., 1.}, {1., -1.}}]}}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.427513678703084*^9, 3.522377775840145*^9, 3.653108614925228*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[22]="] }, Open ]], Cell[TextData[{ "\n\:50be\:304d\:304c\:ff11\:3068\:3057\:3066\:66f8\:3044\:305f\:76f4\:7ddaA\ \:306e\:5834\:5408\:306f\:ff0c\:6700\:521d\:306e\:4e8c\:3064\:306e\:6761\:4ef6\ \:3092\:6e80\:305f\:3059\:70b9\:306f\:ff0c(\[NonBreakingSpace]\:539f\:70b9\ \:3092\:306e\:305e\:3044\:3066\:ff09\n ( -", Cell[BoxData[ FormBox[ SubscriptBox["S", "0"], TraditionalForm]]], ")*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "1"], TraditionalForm]]], "\:ff0b( -", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["B", "0"], ")"}], TraditionalForm]]], "*\:ff58", Cell[BoxData[ FormBox[ SubscriptBox["", "2"], TraditionalForm]]], " \[GreaterFullEqual] 0\:ff0c\n\:3092\:6e80\:305f\:3055\:306a\:3044\:3053\ \:3068\:304c\:308f\:304b\:308b\:3002" }], "Text", CellChangeTimes->{{3.427513717554936*^9, 3.4275137274131536`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"%12", ",", "%", ",", "%%"}], "]"}]], "Input", CellChangeTimes->{{3.396422817524397*^9, 3.3964228245745344`*^9}, { 3.4275137041541023`*^9, 3.42751370536709*^9}, {3.653108639140877*^9, 3.653108639562046*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[23]:="], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJx1mHt0VNUVxgNSH5RYwIg4PIyCOI0IgTLI++hKy6IsCgHRqoWIyEMMCg0E CKKEBCYKWAHHhrJY1GnFFpQAEkMJEw5vSMJjCAlDYhJCMnmTBEYjorXTcK6/ k7UOK/nnrO/OvWd/e+9vf+fePDpzwZTZ7UNCQo61Cwm5vVZkrTgVDDaJp341 om9MVK1cPefr5jT3NZG3f/OU0MpKye/gX1v3iaUzbiZ6nOX6fjD3g89Zz4lh Xb+I8UWX6ufBPA/meXCktYqk1+YddLh8cpG1r8bsD2Z/MPuD2R+83FrFmfR+ 3V0+r44HJh6YeGDigYkHJh74uLWKJzudrvU7juv4YOKDiQ8mPpj4YOKDiQ/u aa3i+8yOHzgDOzUfMHzA8AHDBwwfMHzA8AHDB+yxVsEKPzD8wPADww8MPzD8 wPADww8MPzA8TV5gc4UvGL5g+ILhC4YvGL5g+ILh21ZfzTqaPM0VvmD4guEL hi8YvmD4guHb1hyYOjT7btbV5G2u8AfDHwx/MPzB8AfDv625NefG1KmpA7PO Jm9zhT8Y/mD4g+EPhn9bPmf6jjn35pyZOjZ1YtbdzMNcyQdMPmDyAZNPWz5t +qbpW6ZPmHNo6tzUjdkHMw9zJR8w+YDJp61zzTx3zHPA9GHT90xfMefWnANT V2ZfzLzMlfzA5NfWOW2eo+a5Zp4rpo+bPmn6kDnX5pyYOjP7ZOZlruTX1nuN +R5ivieY57Z5bprnlHkOmD5r+pbpA+YcmTo0+2bmaa5D1P6NIlHFrZaXFN86 0Vfx9MsV1nWRo3iW6TkEh1v3iRL1XJEssFbxhLqer32I3x+xrotyhXNknrWK WrVm6nMbnGutIkT9pXmoJ5iV+3jOjHPS4qt5kRe8qAPXeR8mP3QBX/pOXPpu 8oQPfYYPfYUPdYUPfZty4EJTdmyNmJjxylfRMRXy5quRvRNCK0WV6t8V+ZTa 55xwKt6n5BEV57AYrPZNl9vUflsE6/bQdiluT5X4pOOHE+y7r8rx1r5irYpX LJda+wivtY8Ms/YR3Q6q5yUr17kvTtUrT4y2+MhSi5/IV3kVSOISZ5onKiIq oUHrEP11ej3so1h7k3jByvuOvoGZS+pNX+gDmDpQJ/qBTukjmDomWTx1v9AB 8w9ebuWt+wJP5gie4Eg1n4VyV+dFR2w59YI6cX2r1ReNyY+5oP70GYwOyZc+ ki++Qr/OWH3RmHkhf7sVX+fPHNNfeILpC/VAV9QDX0IP6BrM3Om8Z//jxYCt Ts8DOkE/6ATM/LLiX8wRmLr/aPXrjjmk7/BCF9SBOoKpI3WgH+YcUU/uoz7E IV/48/3OnOyw5kfrCP8F41fwRafEpS/02fRJ5oB41MfkTf3wI/JHN8yF6f9g dEPe5Es+9AtMPPyK/Exdg01dMxes+DIYX2SemDfqgp+AmS/iEBf9U0cwdSFv dIPe6ROYPjEf1I064Sdg5oV5oP7cZ+qMfPFv8sG/4YsvwQf/Jh46gQf647rZ L+qCnsz+0Bd4sdIPzk/mC77UnzlmX/hTb85XdEw+1BfdUSfyaPjF0Uybq/X/ bbaUzt+nvVqv51N/VxTWDopJvirvDVblBleW3PH/r769EnvG/LNEbv/0onSE Fei+4+tdmjbuirUf1v9fmdn187c9zu1yabuRrwVs6fo+e+ljyzzOU1r3ub2m XgmuzNNxVp35a5J7VKH226ffLnw86tYV7Z83Muo3xnqbxCPdcl8KxNXKpF73 r3N2bck7ZE6WY3GVnNBh7TdpN0rEnD+v6xfzjU8mXDhX6Y+/JM6OPdLgb74g V21v2uoM7JW2mk1jom4dEQMif3I5407ecV/cQxHdXDeviuTmuzY6v7ws7Sfn H3Ck14jhn44dYl9wRZYv3j3Nt7BJRKt4DWKWilet+zD/rdEJnqoqmT79wbfd Kxr0+0Hnv5/McAypE9ee6HTY8a2/9Tvrje82Owf7ZeKeX8Z7xtZqv594V/sF vs6t76s2f1aTv6BlLh8ePsreVCTvV/sViUa1X77s/cL3rweKyvS5Q53bP7Zw dqAoT/oml5ywjS/UutmQL0ZHHcgT7SJ6VGXXn9Xveasdx38fWtlybt7MPhBd 2vre13vEm38KrTysdVv0+e11hNY5fuM8kfpAQuhBkbT9+kq3Z6eek/Vq30zZ Z9nc+uz61vfQcxNj17lH5YtzzlWfxdqPa7/6jXWffNfKV+uOPHvFJS/xeb3a r7yqjvly8chXjjiGtPpIfoeRnVyp1eJi+MmHEz7wab+ijhF17lm+63X6PXn9 vnd2O6Y2ivfP35tlG1+q/YrzalxW0t7ov1TKmsK7A9lPtr5vs+//Hr1d73KZ 0f+nen9zud4Xf8uQPxTYIsq0vzRPndgr4YMCnfd/1O9emeRKnOuLztZ14r1w vJqvE3Kx3LfNGdijfZ46T1G/fyUjNlyK8zi3SPO7g77FDSzLt+Uc1n3XfvTM ZG8wmCPK1s/uERN1TvsTOlj9064BUbeKxOPxzXuiSwu0j6CrZbv+NiJquF98 3WfY1MCWYj0X6HLAtOISf3OduOy4ryD4XI04PdzutS2pkO+OufBj2rO1YpnV P/lyUu9a/8d+sWGMt7traZkcr+btrHhDzdspOf+B50858r1aJ5vnH0pxBrJE z/v+uMkZ2C+Ltt6OFyFY+83bMjk0vkqE725e5fnuqqy6yxfm2l8upuReG2pv KpFLlA+cFBeUDxyR1Tc65AaDu8TZ5M6TQiv/JTco/3DLrso/9orRe9652+Xb Kd+ydK2fW6j844JYkd13nH3gcXna0qUYo/zjvCxW/nFFLLb467m+pHzskoRn xNHUN3wbfNK7KeQj56ZqsX73v2f4Iktk8UMl36YNahBlC4tCE/5QKt97Nmqo fVKj/h5J9355ryu1Vq4/tmu6r6xFt9OHPR6zr0afs5+G9U12X2v9Phmg6tfS F5VPptYZ87pK9TtH+wK6pe79VT+LxDKVb77WOfN4pjiyq+tpv47DHDF/SesW feX4tsUXlb9fEY8pfy+UcWs+fCaqsNXvqLdd6TNTDFX+naH7Rr2XKP3lixTl 36dlP+Xfl3W92Xf5juP1/gcvypwut1Z6ulXoetuH5FX4P255n3/xng+deYUy 8fDIPjEXa3W9y8rDUpxTWt/Xq1L6FwRFjWyfneqxrW3U33/Mzaaql1e7R12W 7oL6iYEtrd9L42LqwmP61IsZYQcOOdIrZd2OJdX+NZUi7ei4ZM/Qqz+fb8Va F1/8dt/O2NNXxfzApuH2BcWyw3MpXVyp+aLqzbnX/fFeuV75+VFxj/LzLLn6 vxsnB2zbRGRC8mlbTqo8VDyoOa1dgxjb0NXjGFItGyd1y3RMvSzSH+lR74+/ KNdOu7zGPatazJv7XkZ0RrkMP/bDu57PKvS511GdNzkioM6blvfEuE+GRiVk CM7V6PAdL4VWbpR7I4aWBYNu0dg+viI7Vkrn77qvccadF/5SMcw+8KwcmNjl fefgEmHfNlM6phbIM2/lVvufrxSlE7bP9HUu1uf6/wEnBWmw "], {{ {RGBColor[0.5, 0, 0.5], AbsoluteThickness[1.6], Opacity[0.4], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNmHnc11MWx7+3R1JKyxMVyZP2QkoLWSaUpWxJIWV5UISSytokS3ZCWRrM 2KUZ2xCm7GaYfSyDDMYyY4YZZphsY6I57znv3+uZP87vLufec84999zzOd9f 98aZB85oVlXVHvFTF+3vgn4bdGfQsqD1gjYI+jzos6C7gto61zJoTZX71g/a KKiFvI1KzrUKahf9tkElaLlr2jCvDNZ8FdQhaFN4sa510AvRHxTUO6hP0JdB XwT9MGhjZaCzkzYh7+ugfwfdE7SJfHgbllzfMWgzddUHbe4c8upjTYeg5kFb uB/Z3eQzvjeoc1B37eqqjJ7ajuz2Jfs95Nero49rkbdtUC9lbB20pesHBDUo /377/YO2co51fZWBjQPVjaxtlMH4iKADg8YHDVY3+zqWlDc0aHvlon+YetC/ s35n33DnWLeTdsMboT7076AMxjs6x7qXgoYEfSdoT3nI2FX96OwV9mwc9OPo j3Q9vN3VjY2j1YHOPWyRNUo+vL2Uje29Q17noAe5v5L6xwbtqw7072e7W9D+ tug8wBbZ42xH68vR6h9vy5n28XzIPcg5bDk4aIx6J6kbnYc4x75DbeEdJh9b XnHvRO+VmCKOpmgfdk12LePDncPGI7UPW+rdx/7p7kHGsdqHLSc4h4xNS+o8 OmiqfGw8XvvYf4x2sX+afM53ojKIu9nqQMbqoMagmUEnycfGOfKRcWnQvKDv Bs1SP3pOsUXWycqBd5w6sWmuMpg71RZ7+8ZZugWtiP4ZnhMbT9cXjM90DrsW qBud87UXnZuX7GPbOfI533meAf1vaP8lQaepHx0XOEbn+a7FxoW28C6Uj419 QtdmQQ9F/yLnsPFcdaKPOOXd8DYu0y7s/VGVubV10LXKRcZV7sfefiG7e9DD 0V/kmTnT1fKx8RrtZv+V8tm/WD62N5Q869KgHyiLtTd4l9j1Pf3B+Gb52HK5 9p4ddJPjK4K+b4usG5UBb4k6sekWZWDvrbbYdXeVWAWu3OEZ8MHt7mcMdoFV zV0HLoAH4BJYBQ6BT2BXDfPaug7MAYs6SLwn8vtt6l/iOvABnAC7wJt6dTDX UXmdXHeFPuAOwCvwr0uVdrRz7fyQ8UzQE+4HO7q6n9wPBoBX4A24cF+V+NQg j3xP3gfPwI7OymCut+cgv9Swi7aGWb3lPVAlDvVzH5hA/kcemAA2kP/IY2PV zVx/ZYEJWysLTBio7EGOezrHOnAAfBrifuJ8qPKGO0YW+X5794xwjIwdHSN3 J8fo2dnxy1Vi0i5V6hip7Vspb7j6dpXHGCzYrWrCntGuHSVvB+dGqW9P1w1z H7K21G70gEtg0hht2ss95CPeO7mAnHSm4xo+7Vc14dC4qgmr9tfv5OqDqybc gjfGuYnqABNq2DVeWa9WiTcTqiZMQhZ5CDxoVDe5dlLVhJ37SpPcgz5wZLJy yfOHq+dIx+Ocm6JN5PajtfFYx+ie6hjZ5PNp6j/eMTqmO56i76Yr+0TH6DvJ 8etV4tAMbZ2mDs5Gjp9ZNeHNLPnk6jnaMVveVOdmV014M9czzFLWSP2yjzZx nzVMOM09Z7uWPWAUGAN+/CJoVZW1EPrIvQtcy575yiAXLnT/Ank1XDlfG8nn Ndw4V1lz5Z+nXRcqCx75mdz7ZpV4dnFQy7CrWcman1i8yD1gDvn5UnWTyy7X lkWO5zt3mfqvUge6r3aMLYsdYwd5eok6rnUMXoE311eJJ+DKUnXf4BgdNzpG 502OFypvcdWEMTdpx81VYhc88vit2nSLvBrG3KKM2123yH3Imqcd2LWuym+m Ou2+wz3kfnIxeXemfsF/T1eJW2BRXclvGrDluaBHq8TyZ6vM6Q1BPfx2auOY PE8ObsV3VsnvnberrAOoAZ4P+onrfh60sso83jXWflBljfHTKvN7P+0AQ8G9 bUquJQdvEv13qozJLtH/c5V19a+CHlfOL4Mec/7XVeIVddcWsf4j+78JerLK 2gM9j1SJs8s9bwttxebO2rrSs/KNsEo7qe3RRQ6nXsIGcteW0f9E+X3FzBnq eUpdK/VpgzqfVi86n1HvKv2CLuolbOYt/ExZy/Txc9p+t7xl3tXznuMB/c45 3qvybePDPwa9GLRh0L/0Czbzzfuid/c3/YtviSm+x+uMD+oQ6op/6OsV8vlu DxHVf6q8L3BucMncTq79fZX4h9+2LckH+16rEgPwIXf7vvf4mHtYv1beK8pH znae4wXPslY5exsXrymTe/iDd0H7uv0hJXMyb+Ib548K+rbKHHRW0LCSuegS 54klxtzJW97Lu553O+3DzjHKJM5Xu+Y9/f+S64fYvus8Z/qTcqgH+/v/xfvK 3Nvzvu0dvaWdF7vmL/rtZX2Eno+9J+7oQ+/1Iff90zOu1s5GffB3/fCR+1fI /9C9H8tj76dVxvx1QS1K1rjNnCe2Hpb/qX34n7uGu/qr5+Ks1Mact6VymiuT vLZGv6OXnEeuoiauxeMXxsAGJWvZ9kFblaxpN3W+znEr13TRr2u14R39hv/h f62cV13ziv75Rp818/+k9dT/pTZU2txMe7/VV2/af8PzsKZOv36gz9e5/07n vnEe/wwo6RPyY/F7oZ34yPz6/m9EDuGcnBf/9PS/rNbOrWeuX6d/sfMe99f+ V2puPV9vbu/i3bXwnnj/fF901FetzP+feX93Ob+BPsfGltqJDcy317Yefqug p5W6uNPWfr/QttF+6nPwgPcywDdS+3aibaVv2jo3wD56advZb2aftVuXjJX2 5j90oZ/zM8c3BGs6aNvAkvjU0bl659e3j+942/CH6ssO+pMY20Q+cjhPP+c2 dv4u7SOuBpXMlZ3k93L9diXrY/Ib9Ty4yNtnDnzlnTIHb4xx3sV+V/c2Kp81 uyiTfE3N/YHrGo1hcHSeb49akfphaMkcynh4yVzZYHzVeb+sob4k39Iip4bL 3ZSJDnRSw1JjIYP6Cjyl9rreWCNOqD0+kcc8fPrkFrCwh3EChvYyToifnqVJ Rk/XcO7enh1/9NGfa3xvxMlwbSDHgiN9tR986aOfOUdfz8jafq7H19wb30bg RT/tBNd6e198O/EtcZjxOcB43jloL31IvhimzPs4d0ms5bv87JJ2YcNQ7+LZ oHNK6hzi/Azjkbj933+5xj1xS32wjXFFjA0sTWsHOt/eN0IufSras0qe48lo zyjp76+Ui0ywiJqMM24fc6NL1gaPx8/ckvXO08RRSV8+Ee1pJeuj7sZTg8TZ wd9V0c4sWQMNcw0+eSzaWSXrqQ6eC3vBv229306+I+qNA6Ldr2SOPTfa80rW Zw9GO6JkPTU+2nEl3+Kj7CtZTx0a7cSS+fMRZJesuSZHO6lkDpwW7fKSOLow 2gtK1nYrot2pZO22Q7R7lMy9D0R7W8m6bMdo9yyJI6u9vxm+OfozPdOg/4tb 3i3vZ7D9CVXTmLrrKM5asraYjv6S2I/OCeo9JtplJfG4s/LxGZg3WJmnlrwn 7miBcUaMzSl5r9zplJJ+wSdXRHt5ybrz6mivKllTHl7Sp/jz4JJ+wSfE9VJj G1/O1p8Hlbwb7mVUtPuWrDfw0/36irdySMn3snu0+5TE3N2iHVsSQ6+MdlHJ uJxRMp6IpZHR7l0S908uGU/E0q7RjilZG3BX+3tfxPJ1xvO8knFMDCPjCOVg 4wnaeXrJd8IbuTbaa0rW3MhuVD7xeK8xSXydYoxxjuM8C+c41rOcWfId8gaX RLu4ZC1OzJ5k3P4XyFjFRA== "]], PolygonBox[CompressedData[" 1:eJwtlNdvDnAUhs+R3rly59bf4KZWrRuuKkWQWq29Wnu09t6jVuwRW42KGLVX 7YgQQowgCIKQiMSV5+3biyff03zfb53znrYqryypaBYR3aAAhmXEYfiCl8FS fCDU4TdhFL4BHuA/oBTvD8fwljAcr4H7+Ffoi9dDAbTg7yV8DoAT+A1ojy+H BrwWduO74AX+EjriK+FO+A6D8P3wDm8NQ/C1cA//BDvxHfAMfw4L8V56E34t fNZ4OBc+c4zuDr/wzTAYXw138fewDK+As/gtWIFPhvP4bSjBe8LBpvoVpX+j 7/TG7fg2eII/hX14n/Rb38JI/Ch8x6thLL4JHuK/oVhnQYD6VK6z4CPeHfbi e+AV/ho24nPhSniPaemaq9b14bWqmWqlPbR2NPwM76G7qMfqre50BO+SzsK3 cG9GpF09OoB3SvfiQ7jX/fSmcM+VJWVCWVCm1Juh8DncI9WmLL1WNapO10y1 ugjHlRV4pLPCvVKNVBv1rBbvmq6d3rA1XWPV9nE4K+qpeqnMzElnTNm6DLPS mVFWLsG8dE1VS9VwRnoGlP0LcAjvnK693tA7fabOegML0plQFq7ChHQGlT1l bnF6ZjQr12EKvijtytQavCr9dmW6Ep+f3ksZXI/PTt9dM7gOn5m+u2ZOszI1 3WvNzCp8evruyvQ4/BT8CWdW2eqRrq0ydhLq0m9pDqfxdmn/G17bpimL2uMM 3iE92/9gC16YjVs19mxieg+tVSYmpdfot/qf0TY9Y5otzeh/w8ywCQ== "]]}]}, {}, {}, {}, {}}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwt0kk3FQAABeDnOMfCqp2lY2fdSglpFJWxiIo0iAiZKUOGRPPAM/OeIRpI c1SGfb/FT/A5x+K75+7u5saVVufcjQgEAsv8Z68Pi5MkMEKQZT5xnix+kckp DrFKFdnkkkM3D6lmjb2hxxzmC3n0UMs6NQxwhG/kM8soFwjzmRVOk8hX7nGR S/ymgDSS+E4dhVymiD56aeAP9QySzA+u8Igm/tLIE1L4yVX6aeEfzTzlGSXM UcwZjjLPNcYYp40NWnnOC66zQCnppPKOG0wwyQM2uc9LXnGLRW6SwTGWKGOK aTrYop3XvKGc99zmLMf5QAUzhOhim07eMkQlH7nDOU4w7DM7BBlhlDHGmWCS KaaZIUSYWeYYop9WqighjzSSOEg8scRwgGiiiNz/7S4VrVdR "]]}}], {{}, {{}, {}, {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], Thickness[0.01], Dashing[{0.03}], LineBox[{{-1., 1.}, {1., -1.}}]}}, {}}, {{}, {{}, {}, {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], Thickness[0.01], LineBox[{{0., 0.}, {-1., -1.}}]}}, {}}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{Automatic, Automatic}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{ "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True, "AxesInFront" -> True}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.427513706426817*^9, 3.5223777888363247`*^9, 3.653108640554956*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[23]="] }, Open ]], Cell[TextData[{ "\n\:3053\:306e\:3088\:3046\:306b\:8003\:3048\:308b\:3068\:ff0c\:4e0a\:306e\ \:3088\:3046\:306b\:7dd1\:306e\:6ce2\:7dda\:3067\:5e73\:9762\:3092\:4e8c\:5206\ \:5272\:3057\:305f\:3068\:304d\:ff0c\:7d2b\:306e\:70b9\:304c\:7dd1\:306e\:7dda\ \:3068\:540c\:3058\:5074\:306b\:3042\:308b\:305f\:3081\:306b\:306f\:ff0c\:5148\ \:307b\:3069\:306f\:ff11\:306b\:8a2d\:5b9a\:3057\:305f", StyleBox["\:7dd1\:306e\:7dda\:306e\:50be\:304d\:304c\:ff0c\:6b21\:306e\:ff0c\ \:9752\:3044\:70b9\:7dda\:3068\:8d64\:3044\:70b9\:7dda\:306e\:50be\:304d\:306e\ \:5916\:306b\:3042\:308c\:3070\:3088\:3044", FontColor->RGBColor[1, 0, 0]], "\:3053\:3068\:304c\:308f\:304b\:308b\:3002\n\n" }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", "1.25`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01`", "]"}], ",", RowBox[{"RGBColor", "[", RowBox[{"0", ",", "0", ",", "1"}], "]"}], ",", RowBox[{"Dashing", "[", RowBox[{"{", "0.03`", "}"}], "]"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "1"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[24]:="], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0, 0, 1], PointSize[0.012833333333333334`], Thickness[0.01], Dashing[{0.03}], LineBox[{{-0.8, -1.}, {0., 0.}}]}}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.42751377780764*^9, 3.522377803404502*^9, 3.653108673315564*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[24]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", "0.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01`", "]"}], ",", RowBox[{"RGBColor", "[", RowBox[{"1", ",", "0", ",", "0"}], "]"}], ",", RowBox[{"Dashing", "[", RowBox[{"{", "0.03`", "}"}], "]"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "1"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[25]:="], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[0.01], Dashing[{0.03}], LineBox[{{-1., -0.5}, {0., 0.}}]}}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.4275137834973392`*^9, 3.522377811471958*^9, 3.6531086794591703`*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[25]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"%12", ",", "%", ",", "%%"}], "]"}]], "Input", CellChangeTimes->{{3.3964228565004416`*^9, 3.3964228625891967`*^9}, { 3.4275137906772623`*^9, 3.427513795165351*^9}, {3.65310868890981*^9, 3.653108689322381*^9}}, FontColor->RGBColor[0, 0, 1], CellLabel->"In[26]:="], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJx1mHt0VNUVxgNSH5RYwIg4PIyCOI0IgTLI++hKy6IsCgHRqoWIyEMMCg0E CKKEBCYKWAHHhrJY1GnFFpQAEkMJEw5vSMJjCAlDYhJCMnmTBEYjorXTcK6/ k7UOK/nnrO/OvWd/e+9vf+fePDpzwZTZ7UNCQo61Cwm5vVZkrTgVDDaJp341 om9MVK1cPefr5jT3NZG3f/OU0MpKye/gX1v3iaUzbiZ6nOX6fjD3g89Zz4lh Xb+I8UWX6ufBPA/meXCktYqk1+YddLh8cpG1r8bsD2Z/MPuD2R+83FrFmfR+ 3V0+r44HJh6YeGDigYkHJh74uLWKJzudrvU7juv4YOKDiQ8mPpj4YOKDiQ/u aa3i+8yOHzgDOzUfMHzA8AHDBwwfMHzA8AHDB+yxVsEKPzD8wPADww8MPzD8 wPADww8MPzA8TV5gc4UvGL5g+ILhC4YvGL5g+ILh21ZfzTqaPM0VvmD4guEL hi8YvmD4guHb1hyYOjT7btbV5G2u8AfDHwx/MPzB8AfDv625NefG1KmpA7PO Jm9zhT8Y/mD4g+EPhn9bPmf6jjn35pyZOjZ1YtbdzMNcyQdMPmDyAZNPWz5t +qbpW6ZPmHNo6tzUjdkHMw9zJR8w+YDJp61zzTx3zHPA9GHT90xfMefWnANT V2ZfzLzMlfzA5NfWOW2eo+a5Zp4rpo+bPmn6kDnX5pyYOjP7ZOZlruTX1nuN +R5ivieY57Z5bprnlHkOmD5r+pbpA+YcmTo0+2bmaa5D1P6NIlHFrZaXFN86 0Vfx9MsV1nWRo3iW6TkEh1v3iRL1XJEssFbxhLqer32I3x+xrotyhXNknrWK WrVm6nMbnGutIkT9pXmoJ5iV+3jOjHPS4qt5kRe8qAPXeR8mP3QBX/pOXPpu 8oQPfYYPfYUPdYUPfZty4EJTdmyNmJjxylfRMRXy5quRvRNCK0WV6t8V+ZTa 55xwKt6n5BEV57AYrPZNl9vUflsE6/bQdiluT5X4pOOHE+y7r8rx1r5irYpX LJda+wivtY8Ms/YR3Q6q5yUr17kvTtUrT4y2+MhSi5/IV3kVSOISZ5onKiIq oUHrEP11ej3so1h7k3jByvuOvoGZS+pNX+gDmDpQJ/qBTukjmDomWTx1v9AB 8w9ebuWt+wJP5gie4Eg1n4VyV+dFR2w59YI6cX2r1ReNyY+5oP70GYwOyZc+ ki++Qr/OWH3RmHkhf7sVX+fPHNNfeILpC/VAV9QDX0IP6BrM3Om8Z//jxYCt Ts8DOkE/6ATM/LLiX8wRmLr/aPXrjjmk7/BCF9SBOoKpI3WgH+YcUU/uoz7E IV/48/3OnOyw5kfrCP8F41fwRafEpS/02fRJ5oB41MfkTf3wI/JHN8yF6f9g dEPe5Es+9AtMPPyK/Exdg01dMxes+DIYX2SemDfqgp+AmS/iEBf9U0cwdSFv dIPe6ROYPjEf1I064Sdg5oV5oP7cZ+qMfPFv8sG/4YsvwQf/Jh46gQf647rZ L+qCnsz+0Bd4sdIPzk/mC77UnzlmX/hTb85XdEw+1BfdUSfyaPjF0Uybq/X/ bbaUzt+nvVqv51N/VxTWDopJvirvDVblBleW3PH/r769EnvG/LNEbv/0onSE Fei+4+tdmjbuirUf1v9fmdn187c9zu1yabuRrwVs6fo+e+ljyzzOU1r3ub2m XgmuzNNxVp35a5J7VKH226ffLnw86tYV7Z83Muo3xnqbxCPdcl8KxNXKpF73 r3N2bck7ZE6WY3GVnNBh7TdpN0rEnD+v6xfzjU8mXDhX6Y+/JM6OPdLgb74g V21v2uoM7JW2mk1jom4dEQMif3I5407ecV/cQxHdXDeviuTmuzY6v7ws7Sfn H3Ck14jhn44dYl9wRZYv3j3Nt7BJRKt4DWKWilet+zD/rdEJnqoqmT79wbfd Kxr0+0Hnv5/McAypE9ee6HTY8a2/9Tvrje82Owf7ZeKeX8Z7xtZqv594V/sF vs6t76s2f1aTv6BlLh8ePsreVCTvV/sViUa1X77s/cL3rweKyvS5Q53bP7Zw dqAoT/oml5ywjS/UutmQL0ZHHcgT7SJ6VGXXn9Xveasdx38fWtlybt7MPhBd 2vre13vEm38KrTysdVv0+e11hNY5fuM8kfpAQuhBkbT9+kq3Z6eek/Vq30zZ Z9nc+uz61vfQcxNj17lH5YtzzlWfxdqPa7/6jXWffNfKV+uOPHvFJS/xeb3a r7yqjvly8chXjjiGtPpIfoeRnVyp1eJi+MmHEz7wab+ijhF17lm+63X6PXn9 vnd2O6Y2ivfP35tlG1+q/YrzalxW0t7ov1TKmsK7A9lPtr5vs+//Hr1d73KZ 0f+nen9zud4Xf8uQPxTYIsq0vzRPndgr4YMCnfd/1O9emeRKnOuLztZ14r1w vJqvE3Kx3LfNGdijfZ46T1G/fyUjNlyK8zi3SPO7g77FDSzLt+Uc1n3XfvTM ZG8wmCPK1s/uERN1TvsTOlj9064BUbeKxOPxzXuiSwu0j6CrZbv+NiJquF98 3WfY1MCWYj0X6HLAtOISf3OduOy4ryD4XI04PdzutS2pkO+OufBj2rO1YpnV P/lyUu9a/8d+sWGMt7traZkcr+btrHhDzdspOf+B50858r1aJ5vnH0pxBrJE z/v+uMkZ2C+Ltt6OFyFY+83bMjk0vkqE725e5fnuqqy6yxfm2l8upuReG2pv KpFLlA+cFBeUDxyR1Tc65AaDu8TZ5M6TQiv/JTco/3DLrso/9orRe9652+Xb Kd+ydK2fW6j844JYkd13nH3gcXna0qUYo/zjvCxW/nFFLLb467m+pHzskoRn xNHUN3wbfNK7KeQj56ZqsX73v2f4Iktk8UMl36YNahBlC4tCE/5QKt97Nmqo fVKj/h5J9355ryu1Vq4/tmu6r6xFt9OHPR6zr0afs5+G9U12X2v9Phmg6tfS F5VPptYZ87pK9TtH+wK6pe79VT+LxDKVb77WOfN4pjiyq+tpv47DHDF/SesW feX4tsUXlb9fEY8pfy+UcWs+fCaqsNXvqLdd6TNTDFX+naH7Rr2XKP3lixTl 36dlP+Xfl3W92Xf5juP1/gcvypwut1Z6ulXoetuH5FX4P255n3/xng+deYUy 8fDIPjEXa3W9y8rDUpxTWt/Xq1L6FwRFjWyfneqxrW3U33/Mzaaql1e7R12W 7oL6iYEtrd9L42LqwmP61IsZYQcOOdIrZd2OJdX+NZUi7ei4ZM/Qqz+fb8Va F1/8dt/O2NNXxfzApuH2BcWyw3MpXVyp+aLqzbnX/fFeuV75+VFxj/LzLLn6 vxsnB2zbRGRC8mlbTqo8VDyoOa1dgxjb0NXjGFItGyd1y3RMvSzSH+lR74+/ KNdOu7zGPatazJv7XkZ0RrkMP/bDu57PKvS511GdNzkioM6blvfEuE+GRiVk CM7V6PAdL4VWbpR7I4aWBYNu0dg+viI7Vkrn77qvccadF/5SMcw+8KwcmNjl fefgEmHfNlM6phbIM2/lVvufrxSlE7bP9HUu1uf6/wEnBWmw "], {{ {RGBColor[0.5, 0, 0.5], AbsoluteThickness[1.6], Opacity[0.4], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNmHnc11MWx7+3R1JKyxMVyZP2QkoLWSaUpWxJIWV5UISSytokS3ZCWRrM 2KUZ2xCm7GaYfSyDDMYyY4YZZphsY6I57znv3+uZP87vLufec84999zzOd9f 98aZB85oVlXVHvFTF+3vgn4bdGfQsqD1gjYI+jzos6C7gto61zJoTZX71g/a KKiFvI1KzrUKahf9tkElaLlr2jCvDNZ8FdQhaFN4sa510AvRHxTUO6hP0JdB XwT9MGhjZaCzkzYh7+ugfwfdE7SJfHgbllzfMWgzddUHbe4c8upjTYeg5kFb uB/Z3eQzvjeoc1B37eqqjJ7ajuz2Jfs95Nero49rkbdtUC9lbB20pesHBDUo /377/YO2co51fZWBjQPVjaxtlMH4iKADg8YHDVY3+zqWlDc0aHvlon+YetC/ s35n33DnWLeTdsMboT7076AMxjs6x7qXgoYEfSdoT3nI2FX96OwV9mwc9OPo j3Q9vN3VjY2j1YHOPWyRNUo+vL2Uje29Q17noAe5v5L6xwbtqw7072e7W9D+ tug8wBbZ42xH68vR6h9vy5n28XzIPcg5bDk4aIx6J6kbnYc4x75DbeEdJh9b XnHvRO+VmCKOpmgfdk12LePDncPGI7UPW+rdx/7p7kHGsdqHLSc4h4xNS+o8 OmiqfGw8XvvYf4x2sX+afM53ojKIu9nqQMbqoMagmUEnycfGOfKRcWnQvKDv Bs1SP3pOsUXWycqBd5w6sWmuMpg71RZ7+8ZZugWtiP4ZnhMbT9cXjM90DrsW qBud87UXnZuX7GPbOfI533meAf1vaP8lQaepHx0XOEbn+a7FxoW28C6Uj419 QtdmQQ9F/yLnsPFcdaKPOOXd8DYu0y7s/VGVubV10LXKRcZV7sfefiG7e9DD 0V/kmTnT1fKx8RrtZv+V8tm/WD62N5Q869KgHyiLtTd4l9j1Pf3B+Gb52HK5 9p4ddJPjK4K+b4usG5UBb4k6sekWZWDvrbbYdXeVWAWu3OEZ8MHt7mcMdoFV zV0HLoAH4BJYBQ6BT2BXDfPaug7MAYs6SLwn8vtt6l/iOvABnAC7wJt6dTDX UXmdXHeFPuAOwCvwr0uVdrRz7fyQ8UzQE+4HO7q6n9wPBoBX4A24cF+V+NQg j3xP3gfPwI7OymCut+cgv9Swi7aGWb3lPVAlDvVzH5hA/kcemAA2kP/IY2PV zVx/ZYEJWysLTBio7EGOezrHOnAAfBrifuJ8qPKGO0YW+X5794xwjIwdHSN3 J8fo2dnxy1Vi0i5V6hip7Vspb7j6dpXHGCzYrWrCntGuHSVvB+dGqW9P1w1z H7K21G70gEtg0hht2ss95CPeO7mAnHSm4xo+7Vc14dC4qgmr9tfv5OqDqybc gjfGuYnqABNq2DVeWa9WiTcTqiZMQhZ5CDxoVDe5dlLVhJ37SpPcgz5wZLJy yfOHq+dIx+Ocm6JN5PajtfFYx+ie6hjZ5PNp6j/eMTqmO56i76Yr+0TH6DvJ 8etV4tAMbZ2mDs5Gjp9ZNeHNLPnk6jnaMVveVOdmV014M9czzFLWSP2yjzZx nzVMOM09Z7uWPWAUGAN+/CJoVZW1EPrIvQtcy575yiAXLnT/Ank1XDlfG8nn Ndw4V1lz5Z+nXRcqCx75mdz7ZpV4dnFQy7CrWcman1i8yD1gDvn5UnWTyy7X lkWO5zt3mfqvUge6r3aMLYsdYwd5eok6rnUMXoE311eJJ+DKUnXf4BgdNzpG 502OFypvcdWEMTdpx81VYhc88vit2nSLvBrG3KKM2123yH3Imqcd2LWuym+m Ou2+wz3kfnIxeXemfsF/T1eJW2BRXclvGrDluaBHq8TyZ6vM6Q1BPfx2auOY PE8ObsV3VsnvnberrAOoAZ4P+onrfh60sso83jXWflBljfHTKvN7P+0AQ8G9 bUquJQdvEv13qozJLtH/c5V19a+CHlfOL4Mec/7XVeIVddcWsf4j+78JerLK 2gM9j1SJs8s9bwttxebO2rrSs/KNsEo7qe3RRQ6nXsIGcteW0f9E+X3FzBnq eUpdK/VpgzqfVi86n1HvKv2CLuolbOYt/ExZy/Txc9p+t7xl3tXznuMB/c45 3qvybePDPwa9GLRh0L/0Czbzzfuid/c3/YtviSm+x+uMD+oQ6op/6OsV8vlu DxHVf6q8L3BucMncTq79fZX4h9+2LckH+16rEgPwIXf7vvf4mHtYv1beK8pH znae4wXPslY5exsXrymTe/iDd0H7uv0hJXMyb+Ib548K+rbKHHRW0LCSuegS 54klxtzJW97Lu553O+3DzjHKJM5Xu+Y9/f+S64fYvus8Z/qTcqgH+/v/xfvK 3Nvzvu0dvaWdF7vmL/rtZX2Eno+9J+7oQ+/1Iff90zOu1s5GffB3/fCR+1fI /9C9H8tj76dVxvx1QS1K1rjNnCe2Hpb/qX34n7uGu/qr5+Ks1Mact6VymiuT vLZGv6OXnEeuoiauxeMXxsAGJWvZ9kFblaxpN3W+znEr13TRr2u14R39hv/h f62cV13ziv75Rp818/+k9dT/pTZU2txMe7/VV2/af8PzsKZOv36gz9e5/07n vnEe/wwo6RPyY/F7oZ34yPz6/m9EDuGcnBf/9PS/rNbOrWeuX6d/sfMe99f+ V2puPV9vbu/i3bXwnnj/fF901FetzP+feX93Ob+BPsfGltqJDcy317Yefqug p5W6uNPWfr/QttF+6nPwgPcywDdS+3aibaVv2jo3wD56advZb2aftVuXjJX2 5j90oZ/zM8c3BGs6aNvAkvjU0bl659e3j+942/CH6ssO+pMY20Q+cjhPP+c2 dv4u7SOuBpXMlZ3k93L9diXrY/Ib9Ty4yNtnDnzlnTIHb4xx3sV+V/c2Kp81 uyiTfE3N/YHrGo1hcHSeb49akfphaMkcynh4yVzZYHzVeb+sob4k39Iip4bL 3ZSJDnRSw1JjIYP6Cjyl9rreWCNOqD0+kcc8fPrkFrCwh3EChvYyToifnqVJ Rk/XcO7enh1/9NGfa3xvxMlwbSDHgiN9tR986aOfOUdfz8jafq7H19wb30bg RT/tBNd6e198O/EtcZjxOcB43jloL31IvhimzPs4d0ms5bv87JJ2YcNQ7+LZ oHNK6hzi/Azjkbj933+5xj1xS32wjXFFjA0sTWsHOt/eN0IufSras0qe48lo zyjp76+Ui0ywiJqMM24fc6NL1gaPx8/ckvXO08RRSV8+Ee1pJeuj7sZTg8TZ wd9V0c4sWQMNcw0+eSzaWSXrqQ6eC3vBv229306+I+qNA6Ldr2SOPTfa80rW Zw9GO6JkPTU+2nEl3+Kj7CtZTx0a7cSS+fMRZJesuSZHO6lkDpwW7fKSOLow 2gtK1nYrot2pZO22Q7R7lMy9D0R7W8m6bMdo9yyJI6u9vxm+OfozPdOg/4tb 3i3vZ7D9CVXTmLrrKM5asraYjv6S2I/OCeo9JtplJfG4s/LxGZg3WJmnlrwn 7miBcUaMzSl5r9zplJJ+wSdXRHt5ybrz6mivKllTHl7Sp/jz4JJ+wSfE9VJj G1/O1p8Hlbwb7mVUtPuWrDfw0/36irdySMn3snu0+5TE3N2iHVsSQ6+MdlHJ uJxRMp6IpZHR7l0S908uGU/E0q7RjilZG3BX+3tfxPJ1xvO8knFMDCPjCOVg 4wnaeXrJd8IbuTbaa0rW3MhuVD7xeK8xSXydYoxxjuM8C+c41rOcWfId8gaX RLu4ZC1OzJ5k3P4XyFjFRA== "]], PolygonBox[CompressedData[" 1:eJwtlNdvDnAUhs+R3rly59bf4KZWrRuuKkWQWq29Wnu09t6jVuwRW42KGLVX 7YgQQowgCIKQiMSV5+3biyff03zfb53znrYqryypaBYR3aAAhmXEYfiCl8FS fCDU4TdhFL4BHuA/oBTvD8fwljAcr4H7+Ffoi9dDAbTg7yV8DoAT+A1ojy+H BrwWduO74AX+EjriK+FO+A6D8P3wDm8NQ/C1cA//BDvxHfAMfw4L8V56E34t fNZ4OBc+c4zuDr/wzTAYXw138fewDK+As/gtWIFPhvP4bSjBe8LBpvoVpX+j 7/TG7fg2eII/hX14n/Rb38JI/Ch8x6thLL4JHuK/oVhnQYD6VK6z4CPeHfbi e+AV/ho24nPhSniPaemaq9b14bWqmWqlPbR2NPwM76G7qMfqre50BO+SzsK3 cG9GpF09OoB3SvfiQ7jX/fSmcM+VJWVCWVCm1Juh8DncI9WmLL1WNapO10y1 ugjHlRV4pLPCvVKNVBv1rBbvmq6d3rA1XWPV9nE4K+qpeqnMzElnTNm6DLPS mVFWLsG8dE1VS9VwRnoGlP0LcAjvnK693tA7fabOegML0plQFq7ChHQGlT1l bnF6ZjQr12EKvijtytQavCr9dmW6Ep+f3ksZXI/PTt9dM7gOn5m+u2ZOszI1 3WvNzCp8evruyvQ4/BT8CWdW2eqRrq0ydhLq0m9pDqfxdmn/G17bpimL2uMM 3iE92/9gC16YjVs19mxieg+tVSYmpdfot/qf0TY9Y5otzeh/w8ywCQ== "]]}]}, {}, {}, {}, {}}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwt0kk3FQAABeDnOMfCqp2lY2fdSglpFJWxiIo0iAiZKUOGRPPAM/OeIRpI c1SGfb/FT/A5x+K75+7u5saVVufcjQgEAsv8Z68Pi5MkMEKQZT5xnix+kckp DrFKFdnkkkM3D6lmjb2hxxzmC3n0UMs6NQxwhG/kM8soFwjzmRVOk8hX7nGR S/ymgDSS+E4dhVymiD56aeAP9QySzA+u8Igm/tLIE1L4yVX6aeEfzTzlGSXM UcwZjjLPNcYYp40NWnnOC66zQCnppPKOG0wwyQM2uc9LXnGLRW6SwTGWKGOK aTrYop3XvKGc99zmLMf5QAUzhOhim07eMkQlH7nDOU4w7DM7BBlhlDHGmWCS KaaZIUSYWeYYop9WqighjzSSOEg8scRwgGiiiNz/7S4VrVdR "]]}}], {{}, {{}, {}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[0.01], Dashing[{0.03}], LineBox[{{-1., -0.5}, {0., 0.}}]}}, {}}, {{}, {{}, {}, {RGBColor[0, 0, 1], PointSize[0.012833333333333334`], Thickness[0.01], Dashing[{0.03}], LineBox[{{-0.8, -1.}, {0., 0.}}]}}, {}}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(1\\)]\\)\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(x\\), \\(2\\)]\\)\"", TraditionalForm]}, AxesOrigin->{Automatic, Automatic}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{ "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True, "AxesInFront" -> True}, PlotRange->{{-1, 1}, {-1, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.427513796087523*^9, 3.5223778142957373`*^9, 3.653108690072175*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[26]="] }, Open ]], Cell["\<\ \:305d\:306e\:305f\:3081\:306e\:6761\:4ef6\:306f \ \>", "Text"], Cell[TextData[{ "\:3000\:3000\:3000\:3000\:3000\:3000", StyleBox[" ", FontWeight->"Bold"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"(", " ", SubscriptBox["\:ff70B", "0"], ")"}], "/", RowBox[{"(", " ", SubscriptBox["\:ff70S", "0"], ")"}]}], TraditionalForm]], FontWeight->"Bold"], StyleBox[" < 0.5 , ", FontWeight->"Bold"], StyleBox["\:3042\:308b\:3044\:306f\:ff0c", FontVariations->{"CompatibilityType"->0}], StyleBox["1", FontWeight->"Bold"], Cell[BoxData[ FormBox[ RowBox[{ StyleBox[".25", FontWeight->"Bold"], StyleBox[" ", FontWeight->"Bold"], StyleBox["\[LessFullEqual]", FontWeight->"Bold"], RowBox[{ RowBox[{"(", " ", SubscriptBox["\:ff70B", "0"], ")"}], "/", RowBox[{"(", " ", SubscriptBox["\:ff70S", "0"], ")"}]}]}], TraditionalForm]], FontWeight->"Bold"] }], "Text", Background->RGBColor[1, 0.978103, 0.6439]], Cell["\<\ \:3067\:3042\:308b\:3002\ \>", "Text"], Cell[TextData[{ "\:3000\:4ee5\:4e0a\:3092\:307e\:3068\:3081\:3066\:304a\:304f\:3002\:3053\ \:306e\:30d5\:30a1\:30a4\:30eb\:3067\:306f\:ff0c\:4e00\:671f\:9593\:ff0c\:72b6\ \:614b\:65702\:ff0c\:8a3c\:5238\:65702\:306e\:5834\:5408\:306b\:ff0c\:8a3c\ \:5238\:306e\:5c06\:6765\:4fa1\:5024\:3092\:793a\:3059\:30d9\:30af\:30c8\:30eb\ \:304c\:4e00\:6b21\:72ec\:7acb(\:5f93\:3063\:3066\:ff0c\:4e8b\:5b9f\:4e0a\ \:306e\:8a3c\:5238\:306e\:6570\:3082\:ff12\:3064)\:3067\:3042\:308b\:5177\ \:4f53\:7684\:306a\:4f8b\:306b\:304a\:3044\:3066\:ff0c\:88c1\:5b9a\:6a5f\:4f1a\ \:304c\:3042\:308b\:306e\:306f\:3069\:3046\:3044\:3046\:5834\:5408\:304b\:3092\ \:8003\:3048\:305f\:3002\n\:3000\:8a3c\:5238\:ff11\:306f\:682a\:5f0f\:3067\ \:5c06\:6765\:4fa1\:5024\:306f {200,80}\:ff0c\:8a3c\:5238\:ff12\:306f\:50b5\ \:5238\:3067\:5c06\:6765\:4fa1\:5024\:306f {100,100} \:3068\:3059\:308b\:3068\ \:ff0c\:88c1\:5b9a\:6a5f\:4f1a\:304c\:5b58\:5728\:3059\:308b\:306e\:306f\:ff0c\ \:73fe\:5728\:306e\:682a\:4fa1", Cell[BoxData[ FormBox[ RowBox[{" ", RowBox[{ SubscriptBox["S", "0"], " ", StyleBox["\:304a\:3088\:3073", FontWeight->"Plain", FontSlant->"Plain", FontTracking->"Plain", FontVariations->{"CompatibilityType"->0, "Masked"->False, "Outline"->False, "RotationAngle"->0, "Shadow"->False, "StrikeThrough"->False, "Underline"->False}]}]}], TraditionalForm]], FontWeight->"Bold"], "\:73fe\:5728\:306e\:50b5\:5238\:4fa1\:683c", Cell[BoxData[ FormBox[ RowBox[{" ", SubscriptBox["B", "0"]}], TraditionalForm]], FontWeight->"Bold"], "\:306e\:6bd4\:7387\:304c\:4e0a\:306e\:6761\:4ef6\:3092\:6e80\:305f\:3059\ \:3068\:304d\:3067\:3042\:308b\:3002\n" }], "Text", CellChangeTimes->{3.3964229379375424`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "\n", StyleBox["9.5 An exercise", FontWeight->"Bold", FontColor->RGBColor[0, 0.501961, 1]] }], "Subsubtitle", CellChangeTimes->{{3.653108917867055*^9, 3.653108934411043*^9}}], Cell["\:554f\:3044\:ff1a\:3053\:306e\:30d5\:30a1\:30a4\:30eb\:306e\:8a2d\:5b9a\ \:3067\:ff0c\:50b5\:5238\:4fa1\:683c\:304c100\:5186\:ff0c\:682a\:4fa1\:304c75\ \:5186\:306e\:3068\:304d\:ff0c\:88c1\:5b9a\:6a5f\:4f1a\:3092\:751f\:307f\:51fa\ \:3059\:30dd\:30fc\:30c8\:30d5\:30a9\:30ea\:30aa\:3092\:898b\:3064\:3051\:306a\ \:3055\:3044\:3002", "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"100.", "/", "75"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[23]:="], Cell[BoxData["1.3333333333333335`"], "Output", CellChangeTimes->{3.522377828126719*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[23]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"100.", "/", "75"}], " ", ">", " ", "1.25"}]], "Input", FontColor->RGBColor[0, 0, 1], CellLabel->"In[24]:="], Cell[BoxData["True"], "Output", CellChangeTimes->{3.52237783028098*^9}, Background->GrayLevel[0.900008], CellLabel->"Out[24]="] }, Open ]], Cell["\<\ \:3053\:308c\:304c\:88c1\:5b9a\:6a5f\:4f1a\:3068\:306a\:308b\:3053\:3068\:306f\ \:ff0c\:76f4\:611f\:7684\:306b\:306f\:660e\:3089\:304b\:3002\:50b5\:5238\:306f\ \:ff0c\:73fe\:5728\:3082\:5c06\:6765\:3082\:78ba\:5b9f\:306b100\:5186\:306a\ \:306e\:3067\:ff0c\:5229\:5b50\:3092\:6255\:3046\:3053\:3068\:306a\:304f\:8cc7\ \:91d1\:3092\:8cb8\:3057\:501f\:308a\:3067\:304d\:308b\:3053\:3068\:306b\:306a\ \:308b\:3002\:682a\:5f0f\:306f\:ff0c\:73fe\:572875\:5186\:3057\:3066\:3044\ \:308b\:304c\:ff0c\:4e0d\:6cc1\:3067\:308280\:5186\:ff0c\:597d\:6cc1\:3067\ \:306f200\:5186\:306b\:306a\:308b\:304b\:3089\:ff0c\:30ed\:30f3\:30b0\:306e\ \:30dd\:30b8\:30b7\:30e7\:30f3\:3092\:53d6\:308b\:3068\:78ba\:5b9f\:306b\:5132\ \:304b\:308b(\:8cc7\:91d1\:304c\:5897\:3048\:308b)\:3002 \:3088\:3063\:3066\:ff0c\:50b5\:5238\:3092\:4f8b\:3048\:307075\:5146\:5186\ \:5206\:30b7\:30e7\:30fc\:30c8\:3057\:3066\:ff0c\:8cc7\:91d1\:309275\:5146\ \:5186\:5f97\:308b\:3002(\:50b5\:5238\:3092\:501f\:308a\:3066\:ff0c\:3053\ \:308c\:3092\:58f2\:308b\:3002)\:3053\:306e\:8cc7\:91d1\:3092\:ff0c\:682a\ \:5f0f\:3092\:ff11\:5146\:682a\:8cb7\:3046\:306e\:306b\:4f7f\:3046\:3002\:5c06\ \:6765\:ff0c\:682a\:5f0f\:3092\:58f2\:308c\:3070\:306f80\:5146\:5186\:304b200\ \:5146\:5186\:306b\:306a\:308b\:306e\:3067\:ff0c\:50b5\:5238\:309275\:5146\ \:5186\:5206\:8cb7\:3044\:623b\:3059\:306e\:306b\:5341\:5206\:3067\:3042\:308b\ \:3002\:8cb7\:3044\:623b\:3057\:305f\:50b5\:5238\:306f\:ff0c\:6700\:521d\:306b\ \:50b5\:5238\:3092\:8cb8\:3057\:3066\:304f\:308c\:305f\:4eba\:306b\:8fd4\:3055\ \:306a\:3051\:308c\:3070\:306a\:3089\:306a\:3044\:3002\:3053\:3046\:3057\:305f\ \:6e05\:7b97\:304c\:3059\:3093\:3060\:3042\:3068\:ff0c5\:5146\:5186\:306a\ \:3044\:3057125\:5146\:5186\:306e\:8cc7\:91d1\:304c\:624b\:5143\:306b\:6b8b\ \:308b\:3053\:3068\:306b\:306a\:308b\:3002\:898f\:6a21\:309210\:500d\:306b\ \:3059\:308c\:3070\:ff0c\:3055\:3089\:306b10\:500d\:ff0c\:300c\:5132\:304b\ \:308b\:300d\:3053\:3068\:306b\:306a\:308b\:3002 \ \>", "Text"] }, Open ]] }, Open ]] }, WindowSize->{844, 681}, WindowMargins->{{38, Automatic}, {Automatic, 9}}, PrintingCopies->1, PrintingPageRange->{1, Automatic}, ShowSelection->True, Magnification->1.25, FrontEndVersion->"10.1 for Mac OS X x86 (32-bit, 64-bit Kernel) (2015\:5e743\ \:670824\:65e5)", StyleDefinitions->"Textbook.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{ "Info3653140808-8810565"->{ Cell[68387, 1454, 943, 18, 75, "Print", CellTags->"Info3653140808-8810565"]} } *) (*CellTagsIndex CellTagsIndex->{ {"Info3653140808-8810565", 166260, 3662} } *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 66, 0, 68, "Title"], Cell[636, 24, 111, 1, 36, "Subtitle"], Cell[750, 27, 208, 3, 36, "Subsubtitle"], Cell[961, 32, 1152, 16, 82, "Text"], Cell[2116, 50, 799, 11, 63, "Text"], Cell[2918, 63, 1343, 39, 153, "Text"], Cell[4264, 104, 7636, 175, 557, "Text"], Cell[11903, 281, 2514, 73, 240, "Text"], Cell[14420, 356, 1548, 25, 149, "Text"], Cell[CellGroupData[{ Cell[15993, 385, 234, 6, 57, "Subsubtitle"], Cell[16230, 393, 556, 15, 104, "Text"], Cell[CellGroupData[{ Cell[16811, 412, 277, 8, 31, "Input"], Cell[17091, 422, 289, 8, 44, "Output"] }, Open ]], Cell[17395, 433, 147, 1, 27, "Text"], Cell[CellGroupData[{ Cell[17567, 438, 168, 5, 31, "Input"], Cell[17738, 445, 245, 6, 44, "Output"] }, Open ]], Cell[17998, 454, 187, 2, 27, "Text"], Cell[CellGroupData[{ Cell[18210, 460, 108, 3, 31, "Input"], Cell[18321, 465, 318, 9, 44, "Output"] }, Open ]], Cell[18654, 477, 1165, 27, 97, "Text"], Cell[CellGroupData[{ Cell[19844, 508, 966, 25, 51, "Input"], Cell[20813, 535, 10632, 193, 264, "Output"] }, Open ]], Cell[31460, 731, 968, 32, 131, "Text"], Cell[32431, 765, 183, 2, 27, "Text"], Cell[CellGroupData[{ Cell[32639, 771, 166, 5, 31, "Input"], Cell[32808, 778, 265, 6, 44, "Output"] }, Open ]], Cell[33088, 787, 237, 3, 27, "Text"], Cell[CellGroupData[{ Cell[33350, 794, 1047, 29, 70, "Input"], Cell[34400, 825, 10867, 197, 264, "Output"] }, Open ]], Cell[45282, 1025, 913, 25, 156, "Text"], Cell[CellGroupData[{ Cell[46220, 1054, 530, 10, 31, "Input"], Cell[46753, 1066, 20360, 357, 264, "Output"] }, Open ]], Cell[67128, 1426, 1130, 19, 122, "Text"], Cell[CellGroupData[{ Cell[68283, 1449, 101, 3, 31, "Input"], Cell[68387, 1454, 943, 18, 75, "Print", CellTags->"Info3653140808-8810565"] }, Open ]], Cell[69345, 1475, 749, 15, 129, "Text"], Cell[CellGroupData[{ Cell[70119, 1494, 1278, 34, 70, "Input"], Cell[71400, 1530, 10095, 183, 264, "Output"] }, Open ]], Cell[81510, 1716, 1773, 60, 156, "Text"], Cell[CellGroupData[{ Cell[83308, 1780, 329, 6, 31, "Input"], Cell[83640, 1788, 10456, 190, 264, "Output"] }, Open ]], Cell[94111, 1981, 611, 9, 45, "Text"], Cell[CellGroupData[{ Cell[94747, 1994, 1263, 36, 89, "Input"], Cell[96013, 2032, 1043, 28, 264, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[97093, 2065, 349, 7, 31, "Input"], Cell[97445, 2074, 10460, 188, 264, "Output"] }, Open ]], Cell[107920, 2265, 126, 1, 27, "Text"], Cell[CellGroupData[{ Cell[108071, 2270, 1314, 37, 89, "Input"], Cell[109388, 2309, 1022, 28, 264, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[110447, 2342, 358, 7, 31, "Input"], Cell[110808, 2351, 10999, 198, 264, "Output"] }, Open ]], Cell[121822, 2552, 3108, 87, 408, "Text"], Cell[CellGroupData[{ Cell[124955, 2643, 109, 3, 31, "Input"], Cell[125067, 2648, 155, 3, 44, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[125259, 2656, 108, 3, 31, "Input"], Cell[125370, 2661, 153, 3, 44, "Output"] }, Open ]], Cell[125538, 2667, 259, 4, 27, "Text"], Cell[125800, 2673, 236, 8, 27, "Text"], Cell[126039, 2683, 1288, 49, 80, "Text"], Cell[127330, 2734, 166, 4, 53, "Text"], Cell[CellGroupData[{ Cell[127521, 2742, 1306, 38, 89, "Input"], Cell[128830, 2782, 995, 28, 264, "Output"] }, Open ]], Cell[129840, 2813, 651, 23, 57, "Text"], Cell[CellGroupData[{ Cell[130516, 2840, 1386, 40, 89, "Input"], Cell[131905, 2882, 1012, 28, 264, "Output"] }, Open ]], Cell[132932, 2913, 842, 24, 105, "Text"], Cell[CellGroupData[{ Cell[133799, 2941, 315, 7, 31, "Input"], Cell[134117, 2950, 10311, 187, 264, "Output"] }, Open ]], Cell[144443, 3140, 689, 11, 121, "Text"], Cell[CellGroupData[{ Cell[145157, 3155, 1086, 33, 70, "Input"], Cell[146246, 3190, 848, 24, 252, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[147131, 3219, 1085, 33, 70, "Input"], Cell[148219, 3254, 853, 24, 252, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[149109, 3283, 317, 7, 31, "Input"], Cell[149429, 3292, 10337, 188, 264, "Output"] }, Open ]], Cell[159781, 3483, 73, 3, 53, "Text"], Cell[159857, 3488, 930, 34, 49, "Text"], Cell[160790, 3524, 49, 3, 52, "Text"], Cell[160842, 3529, 1772, 40, 135, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[162651, 3574, 197, 6, 57, "Subsubtitle"], Cell[162851, 3582, 347, 4, 45, "Text"], Cell[CellGroupData[{ Cell[163223, 3590, 108, 3, 31, "Input"], Cell[163334, 3595, 146, 3, 44, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[163517, 3603, 144, 4, 31, "Input"], Cell[163664, 3609, 130, 3, 44, "Output"] }, Open ]], Cell[163809, 3615, 1997, 28, 169, "Text"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)